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Abstract. This work examines the effect of two modifications of typical ap-
proaches to evolving neuro controllers for robotic behaviors. First evolutionary
methods were constrained to modify only one element of the population, the only
element to be evaluated in the robot. Secondly the algorithm was allowed to incor-
porate genotypes provided by external sources. These modifications were evalu-
ated through the use of a mobile robot simulator. Each was allowed to evolve in an
arena that allowed it to interact with other robots. Experiments were conducted to
investigate the effect of sharing genotypes and their corresponding fithess among
homogeneous robots - the robots differed only in the initial random phenotype.
The experiments showed that the ability to incorporate successful genotypes from
others increased the rate at which evolution progressed. Communication of good
genotypes allowed behaviors to get fitter faster, and made small initial population
sizes feasible.

1 Introduction

Autonomous mobile robots have long been desired by the research community. The
benefits of interaction between a robot and other external, possibly human, agents has
been displayed for instance, see [5]. The ability to communicate has been shown to pro-
vide great advantages for teams of robots. [3] and [19], among others have highlighted
cases where communication assisted teams of robots in accomplishing given tasks. It
is not too far of a stretch to fathom that the sharing of knowledge or information can
also assist individual robots in a team to learn to follow a wall or execute some other
individually oriented task.

Communication, while a useful component, does not provide autonomy, in any de-
gree by itself. A necessary and sufficient skill is the ability to decide what to do. The
ability of a mobile robot to make decisions is implicitly based on the premise that there
are choices, two or more options that can be selected, each with different merit.

Most work in robotics assumes that there is a preexisting set of choices to choose
from and a preexisting set of algorithms to make these choices. These assumptions are
by no means oversimplifications of the challenges of robotics tasks; e.g., path planning,
but in they do however produce brittle robots [12] that do not adapt to or take into con-
sideration changes in their environments or changes within themselves. If the robot’s
creators are able to identify every possible situation that the robot will encounter and
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devise solutions for each of these, then brittleness wootith@ an issue worth mention-
ing. But if the robot exists in a dynamic, unknown, or unpctable environment, has
noisy actuators, or sensors that produce noisy measurstieenh adaptation and learn-
ing are qualities that are necessary to allow the robot tiopardespite the presence of
challenging limitations.

It must be stated that autonomous decision making is cldseddgd to the desired
outcome or goal of the robot’s operation. Not only is it imjamit to know the choices,
the effects of choices, and how to select between choicesalso important to know
the desired goal or outcome as well. When dealing with mobitetics it is helpful to
borrow a page from [1]; the choices that are to be made areebdetween different
behaviorgthat the robot can manifest.

The ability to learn two-dimensionally, that is to learn htmvexecute a particular
behavior, as well as to learn when to choose to execute thaivie, allows a robot
to act autonomously in the face of dynamic environmentss@en and actuators. This
work investigates enhancements to one approach to leabeimgviors, the neuro con-
troller.

2 On Evolving a Neuro Controller

2.1 Whatis a Neuro Controller?

This research seeks to evolve a neuro controller that alloamobot to display a desired
behavior, in this case the wall following behavior. A neummtoller is an Artificial
Neural Network (ANN) structure similar to that shown in figu8, that connects neurons
in such a manner that when the correct weights and biase®l@eted the controller
produces the desired output from its inputs.

2.2 What is a Genetic Algorithm?

Genetic algorithms (GAs) are often viewed as function ojatars [20]. They are also
heralded as tools that can provide robust and powerful agapearch mechanisms
[16]. These two seemingly disparate definitions are twossimfethe same coin. GAs
are a family of computational models that are loosely bage®arwinian evolution.
GA implementations begin with a typically random populatief potential solutions,
and through a process of mutation and crossover, create ontjal solutions. Each
solution is evaluated and given a fithess value, which is aareaf how well that solu-
tion scored. As the algorithm is executed, the populatioa asole evolves becoming
fitter; the search for the fittest element becomes the sefecfi the fittest element in
the final population. The fittest element is also the solutfat optimizes the fitness
function. GAs have been applied to many types of problemisidiittg some attempts
for the evolution of neuro controllers [2, 4, 7].

2.3 Why Evolve the Solution?

The weights and biases are typically derived through soaigig method. Most train-
ing algorithms are based on a gradient descent method. Beadtthis they can get



trapped in a local minimum and sometimes, as in the case df matlal or non dif-
ferentiable error functions, these methods are incapdlfleding the global minimum
[21]. Since the GA is not crippled by such, it can be appliedatermine the weights.

3 Modifications

3.1 Changel

This work proposes the modification of the family of GAs thiédvas a single genotype
to be actively evolved. This genotype will always be seleécte one of the parents for
the crossover operation and one of its offspring selectegptace it. This genotype
will also be the subject of mutation and any other single ipaegolutionary technique.
This modification was developed for application to neurotaaler evolution but can
be applied to domains with similar needs such as ANN classifie3, 10].

3.2 Motivation

Traditional GA approaches employ random selection of theisms used in the processes
that evolve the population. This creates a problem sinc&thehanges a population
in a random manner as generations evolve. There is no way titan@ solution’s
progress over generations. This is relevant because ehtlosas directly mapped to
a phenotype that creates a neuro controller. Traditionadagrhes essentially evaluate
random attempts at creating the best controller. While tray mork well for appli-
cations that are abstract in nature, when applied to a réalk libis problematic since
the changes can have catastrophic consequences espetiatiythe robot is interact-
ing with external, possibly human agents. We believe thateebapproach would be
to continuously modify an existing behavior in the searcthetter performance. This
approach does allow less variation but it reduces the plgsséigative effects of uneval-
uated genotypes.

3.3 Change 2

This work also proposes a method that allows genotypes tatiedato a population
from an external source.

3.4 Motivation

If the GA is able to incorporate other genotypes that are fierhe population will get
fitter faster as the search is no longer completely randomreMer, if multiple GAs
use the same fitness function to evaluate genotypes and eratiog over the same
solution space then the search should be faster since teeyparating in parallel and
sharing the successes, in the form of high fithess genotijaéshtey encounter.



4 Experimental Setup

4.1 The Behavior

In our experiments, robots are expected to learn the wédhiihg behavior. This means
that upon completion of a learning period that the robot Wél able to traverse the
outline of the arena without bumping into avoidable objecigetting trapped in corners
or other features of the arena. The expected path of the raitbter has a preference
for clockwise nor counter clockwise direction since both acceptable in this case.

4.2 The Robot

This work was based on the capabilities of the Khepera rdtios robot was selected
because it was easy to interface with and did not possesdgtmly Bpecialized sensors
or actuators. The devices found on this robot are common tiymidner mobile robots.
For this work eight proximity sensors, two actuator mot@nsgd the communication
turret were used. The orientation of these sensors is shofigure 1.

To learn to follow a wall, the robot will have to develop a magpbetween the
proximity sensors readings and the actuator values. Theimgphould have the effect
of allowing the robot to perform actions such as turn awaynfabstacles or drive for-
ward if there is no obstacle. The robot will have no cognitaseer so there is no stored
representation of the world or walls for example, but thedvédr will be displayed in a
reactive manner based on the mapping from proximity senedeft and right actuator
motors.

4.3 The Implementation Environment

The experiment was conducted completely using MatLab. Boeah network was pro-

vided using the built in MatLab toolbox and the evolutionalgorithm was a modified

version of the GAOT toolbox [9]. Each robot operated in amartat was populated by
other robots with which it could communicated, sharing dgpe and fithness informa-
tion if permitted. A snapshot of one such arena is shown inrdi@u The simulator used
was the KIKS simulator [18]. The arena and each robot in itenggnerated by individ-

ual instances of a KIKS simulator. In this work, each of thies¢éances was initiated on
a single computer, Pentium Il class or newer, that had at 1&8VIB of RAM.

4.4 Communication

The simulated robots communicated with each other usingalated wireless commu-
nications channel. This capability mirrors those afforttethe real Khepera robot by its
communication turret, complete with bandwidth limitatipimterference and message
segmentation and reassembly.



Fig. 1. On the left an image of the Khepera
robot base, on the right a sketch of the same
showing wheels sensors and turrets

Fig. 2. An arena with three robots

5 Implementation

5.1 The infrastructure

The genetic operations of selection, mutation and comioinatperated on the geno-
type. When the genotype’s fithess was to be determined, it eesded into a pheno-
type - an instantiation of a neurocontroller - that was esxtdd in the robot. During

the process of evaluation, the robot interacted with itsrenment. The robot’s motion

was controlled only by the phenotype provided to it. If thbabwas permitted to do

so it collected genotypes that were transmitted to it. Whetuation was complete it
returned these along with the current genotype which therntesh an updated fitness
value. The following sections discuss attributes of thesegonents in closer detail.

5.2 The Neuro Controller

The input layer of the neuro controller contained eight immdes, one node per sensor,
while the output layer contained two such nodes, one for eaator. There were five
nodes in the hidden layer. These nodes are connected firsttigysi/napses from input
to hidden layer, and then ten from hidden to output layeres€mumbers result from a
design choice that fixed the number of hidden nodes, henctra@med the structure of
the neural network that served as the neuro controller. €hgark was fully connected
and did not utilize a bias value. The neuro controller bewvajiated at any given time
is the current phenotype. Each of the input nodes was coethéata sonar sensor and
the output nodes to the actuators, one to the left and the tathiee right motor.

5.3 The GA Parameters

The genotype was comprised of a vector of signed real nurdleéeenents, one for each
synapse weight and, one extra for the fithess of that genofyeeinitial populations

were comprised of randomly generated genotypes. The GA aisedue of 1e-6 for

epsilon, the resolution and a normal geometric selectioction with parameter p =
0.08. All other parameters are included in tables 1 and 2
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Fig. 3. The neurocontroller

Table 1. Mutation parameters Table 2. Crossover parameters

Multi non- Man-

Mut. Types | Boundary unifarm | uniform Unifarm Crossover Types | Arithmetic | Heuristic | Simple
Iterations 4 B 4 4 Iterations 2 2 2
Delta maxgen. 1] 100 100 1] -
Retries u] 3 o]
shape param. il 3 3 0

5.4 The Fitness Function

The fitness function for this application was devised suet the robot would be re-
warded for having one of its sides close to the wall withoutcting the wall, and for
having no obstacle in front of it. Close was defined as a samsas reading between
seven hundred and nine hundred and ninety nine units. Therdemas applied when
the side closest to an obstacle was within these prescribedds. There was also a
bonus reward applied for robots that displayed more forwaadion than backward
motion. If the sonar abutted an object, the sensor wouldymed reading very near to
1024. The aim was not to collide with objects, so sonar valrger than 999 were not
given a reward. We do not claim that this is the perfect fitriaestion. However, this
one has been demonstrated via trial and error, to perforiferehis application, and
hence was selected. There is much that can be said abouttlod &alecting a fitness
function” please refer to the work of [6, 15, 11, 8] for furthtiscussion of this issue.

5.5 The Experiment

Twelve arenas of three robots each were set up. The robotsinaena exercised the
same communication strategy and had the same maximum gjenesize for the GAs.
These experiments were run for generation sizes increfrsingten to thirty, and also
with and without the aid of communicated data. When commtioicavas not allowed,
the data was transmitted and then destroyed by the recipoerreciept, so each arena
and robot had the same communications load.

6 Results

A cursory glance at figure 4 may lead one to surmise that theifivatibns did not
produce good results. Closer inspection shows that thistishe case. Table 3 shows
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Fig. 4. Avg. arena fitness vs. generation size ofFig. 5. Avg. arena fitness & max. arena fit-
robots w/ & w/o the benefit of communication nesses vs. generation size using basic GA

the slope, intercept and residue of the trend lines of thphgr:alrhe emboldened num-
bers indicate the use of data communicated from other robbtsapparently excellent
performance of the unchanged evolved neuro controller séerbe a result of good

initial populations, which are randomly generated. The aftimprovement, which is

captured by the slope value, is consistent in all cases teatge #1 was not made or
both modifications were made.

Table 3. Slope, intercept and residue data for trend lines of graphs in Figured 8 a

Ml odified GA Basic GA
Awg of arena average Max of arena average
Slope Intercept | Residue Slope Intercept | Residue Slope Intercept | Residus
10| 13.897 117.2 97.826 | 15.50 133. 44583 | 11.899 26.96 | 115.91
20| 13.305 | 110.08 | 155.59 | B.160: 178. 99.574 6.186 | 293.78 101.7__|With Comm
30] 1048 207.57 | 236.97 | 3.192: 317. 153.19 | 9.30E-15 | 469.33 | 4.90E-13
10| 55333 1718 162.5 17.817 114.2 34055 | 20745 | 169.07 | 16274

20| 18739 | 18556 1842 12383 224 87 130.56 9.899 373.98 11776 | Mo comm
30| 051131 | 17157 | 35262 | 28323 f64.15 368.73 14448 | 71473 35282

There was definitely a benefit to communication in the caseseviihe initial pop-
ulation size was one. This benefit disappeared when the gidpuisize was increased
to forty. Figure 4 shows data for the average maximum aremesft of the populations
as a function of generation. Figure 5 shows this data andvwbeage of the average
arena fitnesses, giving a better view of the increasing ftoésall the members of the
population over generations.

Figure 6 shows the paths of two different robots. The panabprshows a robot
with a high fitness, and the one below it, a robot with a low figvealue. These images
give a sense of how the fitness function can relate to denaiadtbehavior.



Fig. 6. Paths of two robots with displaying neurocontrollers of different fitnesse

7 Future Work

These experiments while quite promising were very time aonsg. There were time
gains that are yet to be fully investigated in the data skya@ses, but these experiments
were completed on the order tens of hours; the longest tgkingver thirty hours. Such
long durations seem to be consistent when neuro contraliersvolved, and they make
large numbers of experiments prohibitive. Future work imidlude an implementation
of this work with fast genetic algorithms. Still on the clemfes of genetic algorithms,
the advances made using subpopulations could be incoepdrab future work. Neuro
Evolution of Augmenting Topologies [17] is also a promisiegearch avenue.

A homogeneous set of robots were used for this research.obloésrwere identical
in their sensor and actuator collection as well as in theénpltype structures. Interest-
ing opportunities lie ahead for investigating non-homagmrs cases. This would hint
at the realm of interspecies communication and learning.

Close to the core of this work many potential modificationsirdérest remain.
Only weights of the neuro controller were evolved, the strteecould have also been
evolved, perhaps even in concert with the weights [14]. Tihe sf the arenas and the
number of robots operating in those arenas are also parentétaterest.

8 Conclusion

In robotic applications that evolve neuro controllers fobet motion, evaluation of
genotypes mean that the robot’s operation either has tonbelagied or actually exe-
cuted. Since in many cases it is not feasible to simulateahoperation is often neces-
sary. Testing unevaluated geneotypes in a mobile robotsrig@testing experimental
planes. There is a great deal of uncertainty, but each tegid@s great rewards, even in
failure. Reducing risk is an important goal in both of thefferes and we believe that
making changes to only one genotype allows the mobile robatad The risk reduc-
tion results because the robot should demonstrate greatsistency at each evaluation
since it is likely that most of that genotype remained ungfeah



As those familiar with statistics would expect, reducing thitial population size
of a traditional GA to one produced poor results. This woréveh that this setback is
mitigated by endowing the GA with the ability to share andoiporate some infor-
mation about genotypes with other independent GAs operatmidentical genotype
structures and fitness functions. Thus the modificationgestgd in this work can be
used to address these pitfalls.

Also, since each robot can be initialized with a single ggpetit can be seen that it
would be easy to begin the neuro evolution process with atgpadhat was the result
of prior evolution. This allows a robot to receive a jumpst@he evolution process does
not have to begin randomly, nor does it have to wait until the ef a generation. This
is the quality that allows these modifications to displaydharacteristic of knowledge
transfer across lifetimes. This also opens the door for &real agent to interact with
a robot’s neurocontroller, and to do so at any time.

Learning is a paradigm that is manifested in individuals dleir lifetimes. Genetic
algorithms function as a proxy for learning since they aranifeated by populations
over generations; they do this essentially by searchingutfit a solution space. This
work modifies the GA so that it more closely imitates learning

We have shown the benefit of teams of robots sharing infoomati accomplish-
ing a common task, that of behavior development. The rekemais performed using a
simulated robot. The code used to implement it can be usedttjiron a real Khepera
robot without functional modification. The simulator usedsafirmly grounded in re-
ality, mimicking many of the challenges that real robotsfasuch as sensor noise and
wheel slippage. This is of import since it can then be exgethtat these results will
hold for a real robot as well. Plans are underway to do so.

Despite the promising results and the potential for futuogkwthere are still some
major limitations of this line of research that have not biedlly acknowledged by other
researchers. Foremost the robot, despite all its evolatjocapability, is still an object
of reaction. It has not yet been granted the ability to detiteeor even remember. It
acts based on sensor values and were any of those valuesdudrelg flawed the ro-
bot would no longer display the desired behavior. Furtheeywhile this work places
no limitation on the number of behaviors that could be ewtb)\there is no infrastruc-
ture to control when those behaviors are displayed. [12]doa work to use GAs to
address this issue with the evolution of behavioral pdlicignis is of interest and will
be investigated to see if this or other methods of delibenadind decision making are
appropriate. These are the issues for autonomous robogasy evolution of behaviors
is but a tool in a robotician’s toolbox.
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