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Abstract. A potential application of self-organizing or topographic maps is clus-
tering and visualization of high-dimensional data. It is well-known that an ap-
propriate choice of the degree of smoothness in topographic maps is crucial for
obtaining sensible results. Indeed, experimental evidence suggests that suitably
monitored topographic maps should be preferred as they lead to more accurate
performance. This paper reconsiders the basic toolkit for cluster analysis —based
on the relative distance from each pointer to its immediate neighbours on the
network— from this monitoring perspective. It is shown that the idea works
nicely, that is, much useful information can be encoded and recovered via the
trained map alone (ignoring any possible density estimate available). Moreover,
the fact that a topographic map is not restricted to metric vector spaces makes
this learning structure a perfect tool to deal with biological data, such as DNA
or protein sequences of living organisms, for which only a similarity measure is
readily available.

1 Introduction

We are living the blast of the silicon-based biology era, an era in which investigation
of complete genomes is viable for the first time. We need computer-based technologies
to cope with the vast quantities of data generated by genome projects, seeking not only
increased facilities in data storage and access, but also assistance in computational ma-
nipulation and post-processing. Without methods that help us to analyze this deluge of
data, the information it contains becomes useless.

The Self-Organizing Map (SOM) [1] is a popular neural network model for unsu-
pervised learning that tries to ‘imitate’ theself-organizationprocess taking place in the
sensory cortex of the human brain (by which neighboring neurons will typically be ac-
tivated by similar stimuli). This model develops a mapping from ad-dimensional input
space, into an equal or lower-dimensional discrete lattice with regular, fixed topology.
Thanks to a simple competitive learning process — whereby only weights connected to
the winner (or best matching unit) and its neighbours are updated—, the SOM structure
is often organized (topologically ordered).

We are interested in applying the SOM neural structure for sound clustering of
biological signals. We have a particular application in mind, namely, clustering pro-
teins. This problem has some tradition in the literature [2, 3], and it prompts a number
of interesting issues, beginning with the issue of the ‘vectorial vs. nonvectorial’ data
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representation. However, in this paper we consider only thevectorial case and pursue
some foundational research (i) focusing on the use of interneuron proximity information
alone, and (ii) emphasizing the need to monitor the training process. While both theory
and applications have developed substantially in the SOM literature, there is probably
not a wide awareness yet (among practitioners) of the technical requirements for the
extracted maps, nor there seems to be a wide consensus on how to best monitor, train
or even analyze the SOM structure.

For clustering purposes, a good density estimate of the sampling distribution can
of course be very valuable, and certain kernel-based learning algorithms are naturally
suited to yield such estimates. While conventional kernel-based estimates [4, 5] seem
to provide generally good results, drawbacks in higher dimensions should still occur in
the multivariate case [6]. Recent approaches to SOM training usually incorporate some
statistical machinery yielding richer models and more principled fitting algorithms (the
standard framework lacks a statistical model for the data and thus provides no density
estimate).

As regards monitoring, we have introduced an early-stopping criterion called UDL
(for uniform data load) and we have shown that it provides sensible density estimates
in a wide array of cases [7]. Here we show that the UDL criterion is also useful for
the usual basic proximity summaries (available in all training algorithms). To this end,
four algorithms are tested. Specifically, the batch version(SOM-B) [1] and a convex
adjustment (SOM-Cx) [8] of the standard SOM algorithm are compared to two kernel-
based learning rules: the generative topographic mapping (GTM) [9] and the kernel-
based maximum entropy learning rule (kMER) [10]. The latterthree tend to achieve the
‘equiprobabilistic state’ that motivates the UDL criterion [7]; it appears unlikely that
SOM-B can achieve this state, but it is still monitored in thesame way for the sake of
reference.

The organization is as follows. Section 2 briefly describes the four topographic map
formation algorithms considered in the paper. Section 3 spells out the particular training
and testing strategies examined in the experiments reported in section 4. Some conclu-
sions are drawn in section 5.

2 SOM training algorithms

Before we actually describe the details of the algorithms, it is appropriate to begin with
a bit of background for the work presented here. As often noted, the quality of the SOM
fit will be assessed in the first place by the extent to which theorganization or topology
preservation property holds. A substantial amount of research has been devoted to the
formalization and quantification of this idea. Proposed approaches vary from the early
measures based entirely on the map pointers [11] to increasingly sophisticated variants
that also incorporate some aspects of the data into the analysis [12–15]. While much
progress has been done in the area, there is no universally accepted methodology for
practitioners to follow. Many proposed measures are not easy to interpret, and the avail-
able implementations are scarce. At any rate, empirical confirmation is needed in each
case.
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Determination of the most sensible criterion is also complicated by the nature of the
training algorithms. Most importantly, algorithms differin their magnification factors,
that is, in the ability to reflect exactly the true density generating the data. When the
match between pointer density and data density is exact (at least asymptotically) we
talk of equiprobabilistic maps [16]. These have been arguedto overcome the output
unit underutilization problem found in the standard SOM training algorithm. But even
among theoretically equiprobabilistic algorithms there are, as we shall see, substantial
differences in practical behaviour.

Finally, training algorithms vary also in the amount of modelling machinery in-
volved. As noted above, the traditional SOM structure lacksa statistical model for the
data, whereas modern training algorithms like GTM and kMER provide an explicit den-
sity estimate that can be very useful for clustering purposes. These estimates enhance
the framework and raise questions about the preferred training strategy.

Denote the SOM weight or pointer vectors aswi ∈ IRd, i = 1, ..., N , and the data
asvm ∈ IRd,m = 1, ...,M . In this paper we consider 2D SOMs only; besides, we
restrict consideration to squared maps equipped with the standard topology.

2.1 SOM-batch (SOM-B)

The batch version of Kohonen’s SOM training algorithm (SOM-B) is defined by the
recursive update [1]

wi =

∑M

m=1
vmHi∗

m
i

∑M

m=1
Hi∗

m
i

,

whereH is the neighborhood function, typically chosen with a Gaussian shape and a
monotonically decreasing range, andi∗m = arg mini {‖vm − wi‖} is the best matching
unit for the input data vectorvm. Since SOM-B contains no learning rate parameter, no
convergence problems arise, and more stable asymptotic values for the weightswi’s are
obtained [1].

2.2 Convex adjustment (SOM-Cx)

A convex adjustment for the original SOM algorithm has been studied by Zheng and
Greenleaf [8]. They actually present two nonlinear models of weight adjustments. One
of them uses aconvextransformation to adjust weights. This is seen to provide more
efficient data representation for vector quantization, whereas the convergence rate is
comparable to that of the linear model. Specifically, the standard competitive learning
rule

∆wi = ηHi∗
m

i(vm − wi),

becomes
∆wi = ηHi∗

m
i(vm − wi)

1

κ ,

whereκ is a positive odd integer [8] andη represents the learning rate (which can also
be a monotonically decreasing function of time [1]).
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2.3 Generative Topographic Mapping (GTM)

GTM [9] defines a non-linear mappingy(x,W ) from anL-dimensional latent space to a
d-dimensional data space, whereL < d (and typically equals 2). By suitably constrain-
ing the model to a lattice in latent space, a posterior distribution over the latent grid
is readily obtained using Bayes’ theorem for each data point. More specifically, GTM
training is based on a standard EM procedure aimed at the standard Gaussian-mixture
log-likelihood [9]

log ℓ =

M
∑

m=1

log

{

N
∑

i=1

p(vm|i)P (xi)

}

, (1)

whereP (xi) is the prior mass at each point in the latent grid andp(·|i) is the Gaussian
density centered atyi = y(xi,W ) (equal, of course, to our more commonwi) and
spherical covariance with common varianceσ2

i = β−1. A generalized linear regression
model is typically chosen for the embedding map, namelyy(x,W ) = WΦ(x), where
Φ = Φ(x) is a matrix containing the scores byB fixed basis functions andW is a free
matrix to be optimized together withβ.

Note that the (optimized) quantity in Eq. 1 provides a standard measure on which a
GTM model can be compared to other generative models. Note also that the topology-
preserving nature of the GTM mapping is an automatic consequence of the choice of
a continuous functiony(x,W ) [9]. Basis functions parameters explicitly govern the
smoothness of the fitted manifold.

2.4 Kernel-based Maximum Entropy learning Rule (kMER)

kMER [10] was introduced as an unsupervised competitive learning rule for non-para-
metric density estimation, whose main purpose is to obtain equiprobabilistic topo-
graphic maps on regular, fixed-topology lattices. Here, thereceptive fields of neurons
are (overlapping) radially symmetric kernels, whose radiiare adapted to the local input
density together with the weight vectors that define the kernel centroids. A neuronwi is
‘activated’ by an input datavm if it is contained within the hypersphereSi centered at
wi and with radiusσi. Since hyperspheres are allowed to overlap, several neurons can
be active for a given input vector. An online together with a batch version of kMER are
developed in [10]. We focus here on the online version of kMER, that is,

∆wi = η

N
∑

j=1

HjiΞj(v)Sgn(vm − wi),

whereSgn(·) is the sign function taken componentwise,Ξ is a fuzzy code membership
function andH is the time-decreasing neighborhood function. Note that, unlike GTM,
kMER derives a different standard deviationσi for each mixture Gaussian component.
Specifically, the kernel radiiσi are adjusted so as to verify, at convergence, that the
probability of each neuroni to be active is given by a fixed scale factorρ (which controls
the degree of overlap between receptive fields).

It can be seen that the receptive field weight centers and its radii are adapted to
achieve a topographic map maximizing the unconditional information-theoretic entropy
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[16]. Furthermore, the density estimate output by kMER can be written in terms of a
mixture distribution where the kernel functions representthe component Gaussian den-
sities with equal prior probabilities, providing an heteroscedastic, homogeneous mix-
ture density model [16] whose log-likelihood function can be computed just like in the
GTM case (see Eq. 1 above).

3 Analysis

Once we have trained the SOM, a number of summaries of its structure are routinely
extracted and analyzed. In particular, here we considerSammon’s projections, median
interneuron distances, anddataloads. We now review each of this basic tools in turn.

To visualize high-dimensional SOM structures, use of Sammon’s projection is cus-
tomary. Sammon’s map provides a useful global image while estimating all pairwise
Euclidean distances among SOM pointers and projecting themdirectly onto 2D space.
Thus, since pointer concentrations in data space will tend to be maintained in the pro-
jected image, we can proceed to identify high-density regions directly on the projected
SOM. Furthermore, by displaying the set of projections together with the connections
between immediate neighbours, the degree of self-organization in the underlying SOM
structure can be assessed intuitively in terms of the amountof overcrossing connections.

Interneuron distance or proximity information has also been traditionally used for
cluster detection in the SOM literature. Inspection of pointer interdistances was pio-
neered by Ultsch, who defined theunified-matrix(U-matrix) to visualize Euclidean dis-
tances between neuron weights in Kohonen’s SOM. Here we consider the similarme-
dian interneuron distance(MID) matrix. Each MID entry is the median of the Euclidean
distances between the corresponding pointer and all pointers belonging to a star-shaped,
fixed-radius neighborhood containing typically eight units. The median can be seen as a
conservative choice; more radical options based on extremes can also be implemented.
To facilitate the visualization of pointer concentrations, a linear transformation onto a
256-tone gray scale is standard (the interpretation here isthat the lower the value, the
darker the cell).

On the other hand, the number of data vectors projecting onto(won by) each unit,
namely the neurondataload, is the main quantity of interest for UDL monitoring pur-
poses. Again, to easily visualize the dataload distribution over the map, a similar gray
image is computed, namely, the DL-matrix (note that, in thiscase, darker means higher).
The main idea in UDL is that, in the truly equiprobabilistic case, each neuron would
cover about the same proportion of data, that is, a (nearly) uniform DL-matrix should
be obtained. Hence, training is stopped as soon as the first signs of having reached this
state are noticed [7]. Note that we use the UDL stopping policy as a heuristic for the
optimal value of the final adaptation radius in SOM-B and SOM-Cx.

The training strategy for cluster analysis is thus formallydescribed as follows. First
train the SOM network until a (nearly) uniform DL-matrix is obtained and Sammom’s
projection shows a good level of organization. Compute the MID and DL matrices
associated to this map. We stress that we do not use the maps obtained by training all
the way (which yield much worse results).
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Now, a cluster detection strategy based on MID would first isolate all local maxima
on the MID surface and identify each such a mode with a specificcluster in the data.
We can also consider a minimum Euclidean labelling scheme, in which each neuron is
marked with the label that occurs most within its activationregion. We denote this as
the labelsmatrix below.

4 Experimental work

We now summarize our main experimental results. We first analyze a trimodal 2D data
set with two of the modes close enough to illustrate the finer detail in our algorithms.
Next we examine a mixture of gaussians with clusters relatively apart from each other.
Finally, we consider a real data set with ten clusters in high-dimensional input space.

4.1 Three modes in 2D space (3M-2D)

Figure 1 shows good organization and suitable DL matrices inall cases (albeit more
uniform DL matrices can be seen in the case of GTM and kMER). Asa result, the three
clusters are correctly identified via MID analysis, yet we note that kMER and SOM-Cx
provide the cleanest assignments.

4.2 Seven modes in 5D space (7M-5D)

Data are generated in a two-step process. We first sample the locations of the cluster
centroids, then sample each cluster in term. All Gaussians are spherical, and all clus-
ters have the same size. The standard deviation of the centroid distribution is much
larger than that of the data (clusters are well separated). Figure 2 shows generally nice
behaviour except in the GTM case, where a relatively high number of dead units is un-
expectedly observed. In all other cases, the seven clustersare exhibited very clearly by
the MID matrices.

4.3 Real-world example

We now take up the Multiple Features database from the well-known UCI repository,
which we call the Mfeat data. Hered = 649 and there areM = 2, 000 training vectors
available. As Figure 3 shows, interestingly organized mapsobtain in all cases. These
maps involve rather uniform DL matrices and result in prettygood cluster recognition,
see also [7]. Here we see GTM ranking worst in terms of clusterseparation.

5 Summary and conclusions

We have revisited a universal approach to cluster detectionbased on the SOM structure
and neuron proximity. We have shown that good results are obtained most of the time
when maps are monitored (stopped early) via the UDL criterion introduced in [7]. Early
stopping seems indeed almost a requirement if the ultimate goal of the analysis depends
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Fig. 1. Performance by SOM-B (top), SOM-Cx (middle-up), GTM (middle-down) and kMER
(bottom) on 3M-2D data set: (a) trained maps with data set highlighted; (b) DL matrices; (c)
MID matrices; (d) Labels matrices

on having a faithful approximation to the data-generating distribution. Other stopping
criteria can be seen in [13].

Perhaps the Gaussian kernels in GTM are too constrained by the transformation
from lattice to input space, for it appears that these kernels cannot move freely when
needed at some point along the training process. We have alsoseen that many of the
previous drawbacks are avoided by kMER, which produces moreflexible and more
effective maps, yet SOM-B and SOM-Cx seem also very well behaved and quite useful
in the cases studied.

The scope of the above ideas for SOM-based biosignal clustering is important in as
much as vectorial data keep on being worked out by researchers. Our results should be
reassuring for practitioners following strategies based on neuron proximities, but they
should also be recalled of the need to monitor map formation closely.
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Fig. 2. Performance by SOM-B (top), SOM-Cx (middle-up), GTM (middle-down) and kMER
(bottom) on 7M-5D data set: (a) Sammon projected maps; (b) DL matrices; (c) MID matrices;
(d) Labels matrices
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Fig. 3. Performance by SOM-B (top), SOM-Cx (middle-up), GTM (middle-down) and kMER
(bottom) on Mfeat data set: (a) Sammon projected maps; (b) DL matrices; (c) MID matrices; (d)
Labels matrices
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