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Abstract: In this paper, we propose a mobile robot architecture for person tracking, consisting of an active stereo vision
module (ASVM) and a navigation module (NM). The first tracks the person in stereo images and controls the
pan/tilt unit to keep the target in the visual field. Its output, i.e. the 3D position of the person, is fed to the
NM, which drives the robot towards the target while avoiding obstacles. As a peculiarity of the system, there
is no feedback from the NM or the robot motion controller (RMC) to the ASVM. While this imparts flexibility
in combining the ASVM with a wide range of robot platforms, it puts considerable strain on the ASVM.
Indeed, besides the changes in the target dynamics, it has to cope with the robot motion during obstacle
avoidance. These disturbances are accommodated by generating target location hypotheses in an efficient
manner. Robustness against outliers and occlusions is achieved by employing a multi-hypothesis tracking
method - the particle filter - based on a color model of the target. Moreover, to deal with illumination changes,
the system adaptively updates the color model of the target. The main contributions of this paper lie in (1)
devising a stereo, color-based target tracking method using the stereo geometry constraint and (2) integrating
it with a robotic agent in a loosely coupled manner.

1 INTRODUCTION

In the past, robot navigation was commonly based
upon data coming from classical sensory equipment
like ultrasonic and infrared sensors or laser range
scanners. This approach is in sharp contradiction with
nearly all biological examples (e.g. humans) where
vision is the primary sensing modality. This biologi-
cal example inspired scientists (Beardsley et al., 1995;
Davison and Murray, 1998) to tackle the visual nav-
igation problem and, during the last decade, visual
navigation has gained significant importance.

The main problem in setting up a global control
architecture for a mobile robot with an active vision
control loop is that the frequency of the robot con-
trol loop (and certainly that of an eventual manipula-
tor installed on the mobile agent) differs from the fre-
quency of the vision control loop. This also leads to a
second problem: the reusability of the developed con-
trol architecture on different robotic platforms. Due
to the difficulties with the timing between different
loops in the systems, most researchers (Davison and
Murray, 1998) tune their control processes such that

they work well for one specific robot. Unfortunately,
the high coupling between the visual and the robot
control loop yields a robot-dependent control archi-
tecture.

In this paper, we set up a global system architecture
for a visually guided robot, which is independent from
the specific robot hardware and kinematics. We do
this by separating the visual processing (ASVM), the
navigation control (NM) and the robot motion con-
troller (RMC). As an application for such a robotic
system, we chose the person following task, for which
several problems have to be solved: person tracking,
coping with the erratic motion of the target, stereo
head control, 3D position estimation, robot naviga-
tion and the robot motion control. In the following,
we address each of these problems.

For most tracking applications a Kalman filter is
used, as it is a reliable and efficient tool. As a disad-
vantage, the Kalman filter can not handle multi-modal
distributions as present in our problem. Therefore, we
resort to particle filtering, a Monte Carlo method able
to maintain multiple hypotheses about the target state
in the presence of non-linearity and non-Gaussian dis-
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turbances.
In general, the motion of the target in a target track-

ing scheme is modeled using a predefined model such
as a constant speed or a constant acceleration model
(Strens and Gregory, 2003). This leads to problems
when humans need to be tracked, as they could have
both models as well as unpredictable motions. There-
fore, to cater for the erratic target motion, we propose
an effective mechanism for generating target location
hypotheses in the particle filter. Based on the current
estimate of the system state, a PID controller deter-
mines the control signal to be applied to the pan/tilt
stereo head to keep it aligned with the target.

For the 3D position estimation, some authors (Ping
et al., 2001) use scaling as means to retrieve depth
information, while others (Ghita and P.-F., 2003) use
the depth from defocus measure. The most popular
approach is however to make use of a stereo setup to
estimate the distance to a target (Arsenio and Banks,
1999; Schlegel et al., 2000; Kuniyoshi and Rougeaux,
1999; Wilhelm et al., 2004). This is also the method
we use here.

In the context of robot navigation, many algorithms
have been proposed to solve the path planning prob-
lem, ranging from simple potential field methods (Ko-
ren and Borenstein, 1991) to biologically inspired
neural networks (Franz and H.-A., 2000). We opted
for a behavior based control architecture for the navi-
gation module.

The RMC requires careful consideration of the ro-
bot kinematics and dynamics. As we wanted to build
a system which is easily portable from one robot sys-
tem to another, we decoupled the platform-dependent
RMC from the ASVM and NM. The RMC is there-
fore not considered part of the system architecture and
is not pursued further.

The remainder of this paper is organized as fol-
lows. First, an overview of the system architecture
is given in Section 2. Then, in Section 3, the active
vision module is extensively explained. Here the top-
ics of color histogram matching, stereo geometry, the
particle-filter based target tracking and camera control
are discussed. The navigation module is introduced in
Section 4, after which, in Section 5, we present some
results. Finally, we conclude the paper in Section 6.

2 OVERVIEW

To achieve the task of person following, two main
problems need to be solved:
• The vision system has to track the target person

• The robot has to navigate to the target person with-
out bumping into obstacles

In fact, these two problems can both be considered as
a coordinate system alignment problem. This can be

Figure 1: Definition of the coordinate systems: (OXY Z) is
the stereo head coordinate system, (Ol,rXl,rYl,rZl,r) is the
left/right camera coordinate system, and (ORXRYRZR) is
the robot camera coordinate system.

explained using Figure 1. The objective of the visual
tracking system is to align the coordinate system of
the stereo camera such that theZ-axis points straight
at the target, thus minimizing the relative pan and tilt
angles of the stereo vision system,α andβ respec-
tively. On the other hand, the objective of the robot
is to move towards the goal, and hence to align the
robot coordinate system such that theZR-axis points
straight at the target. This is in general not the case
due to the movement of the target person, the inertia
of the robot and because the robot has to avoid ob-
stacles on its way. Thus, most of the time,αR > 0,
whereαR = ∠(ORZR, OZ). To be able to navigate
in a complex environment with obstacles, a behavior
based robot navigation was adopted, where one be-
havior leads the robot to the target, whereas another
behavior enables the robot to avoid obstacles.

The general system architecture which integrates
all the capabilities discussed above is sketched in
Figure 2. On the left, one can observe the ASVM,
which receives its input from the two cameras in-
stalled on the stereo head. At the heart of ASVM
is a particle filter-based visual tracker which gener-
ates at each time step hypotheses (particles) about the
3D target position (in spherical coordinates) relative
to the (XY Z) frame. These hypotheses are ”pro-
jected” onto the image plane, resulting in a set of
candidate target regions within the left and right im-
ages. For each pair of candidate regions, we com-
pute two color histograms which we compare with
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Figure 2: Overview of the system architecture

the base color histograms (left and right) serving as
model for the tracked person. The likelihood of each
hypothesis is then quantified by the matching degree
between these histograms. The outcome of the track-
ing process is an estimate of the target position in the
form of a probabilistic mixture of the target hypothe-
ses. This estimate consists of the azimuth (α̂), ele-
vation (β̂), and range (̂λ) of the target and its use is
threefold. First, it serves for updating the base color
histograms in view of coping with changing illumi-
nation conditions. Second, the target pose estimate is
fed to the pan & tilt controller, which employs two
PID controllers to ensure smooth and robust stereo
camera control. Finally, the estimate is used to re-
cover the absolute 3D position (relative to the robot
frame) of the target person. This position estimator
links the ASVM to the NM (see Figure 2). There, a
navigation controller will distill a heading direction
and speed from the absolute pan angle (i.e.αR + α̂),
the target range (̂λ) and the input from the propriocep-
tive and exteroceptive sensors. We have tested differ-
ent behavior-based navigation controllers: a simple
dual-behavior fuzzy logic-based navigation controller
and a more elaborate hybrid architecture consisting
of a deliberative and a reactive part. The final output
on this level of the robot navigation module, a head-
ing direction and a speed setpoint, is compatible with
most robotic platforms, no matter what their kinemat-
ics and dynamics are. What follows further are robot-
specific modules, indicated by the shaded blocks in
Figure 2, which are not part of the presented architec-
ture.

3 ACTIVE VISION

The ASVM accomplishes the following tasks:

1. tracking the 3D position of a person over time by
means of the color properties of a region of his
body; the color model of the target is updated in
time to account for the variations in illumination;

2. control of the stereo head such that the person stays
always in the field of view of the stereo head;

These tasks are detailed in the sequel of this section.

3.1 Dynamic model

The state of the target at timek is described by the
vector xk = (αk, βk, λk) containing the spherical
coordinates of the target with respect to the frame
(OXY Z) attached to the stereo head.α is the az-
imuth angle relative toOZ, β is the elevation angle
relative to the plane(OXY ), andλ is the target range.

Since a person may move in an unpredictable way,
we adopt a weak state evolution model (inspired by
(Pérez et al., 2004)) for the stereo head-target system.
More specifically, we assume that the state vector
components evolve according to mutually indepen-
dent Gaussian random walk models, which we aug-
ment with uniform components to capture the possi-
bly erratic motion of the target. Thus the state evolu-
tion model can be written as

p(αk|αk−1) = ϕ1N (αk;αk−1 + cup

k−1, σ
2
1)

+ (1 − ϕ1)U(αk;−αm, αm)
(1)

p(βk|βk−1) = ϕ2N (βk;βk−1 + cut
k−1, σ

2
2)

+ (1 − ϕ2)U(βk;−βm, βm)
(2)

p(λk|λk−1) = ϕ3N (λk;λk−1, σ
2
3)

+ (1 − ϕ3)U(λk;λmin, λmax)
(3)

whereup

k andut
k are the pan and tilt control inputs,

c is a known coefficient,{ϕi}
3
i=1 ∈ (0, 1) are known

mixing coefficients,N (x;µ, σ2) denotes a Gaussian
distribution of variablex, meanµ, and varianceσ2,
and U(x;xmin, xmax) signifies thatx is uniformly
distributed betweenxmin andxmax. Note thatσ1,2,3,
αm, βm, λmin andλmax are known by design. Since
αk, βk, λk are independent variables, it follows that
the state evolution distribution factorizes as :

p(xk|xk−1) = p(αk|αk−1)p(βk|βk−1)p(λk|λk−1).
(4)

3.2 Stereo Geometry

The geometry of the stereo vision system is sketched
in Figure 1. We track the 3D position of the target rel-
ative to the frameXY Z, (α, β, λ), using color mea-
surements in the image plane. Hence, we need to find
a relationship between(α, β, λ) and the 2D position
of the point where the target projects on the image
plane, for each image in a stereo pair. To this end, a
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first step is to compute the azimuth and elevation an-
gles of the target with respect to the coordinate frame
attached to each camera, i.e.(αl, βl) for the left image
and(αr, βr) for the right image. As this derivation is
identical forα andβ, we only present the solution for
the azimuth angles here. From (Vieville, 1997, p. 30),
we have that

αl,r = arctan

[

u0 + f

(

tan(α) ∓
b

2λ cos(α)

)]

(5)
whereu0 is the optical center of the camera,b is the
baseline andf is the focal length.

Now, we shall relate(αl, βl, αr, βr) to the posi-
tion of the target projection in each image. Letpl =
(ul, vl) andpr = (ur, vr) denote the position of the
target projection on the left imageIl and on the right
imageIl, respectively. Given the geometry of the im-
age formation, the following relations hold:

ul,r = f · Du · tan(αl,r) (6)

vl,r = f · Dv · tan(βl,r) (7)

where Du and Dv represent the number of pixels
per meter in horizontal and vertical direction, respec-
tively. Thus, starting from(α, β, λ), we can deter-
minepl andpr based on (5), (6), and (7). Let

(pl,pr) = T2S(α, β, λ)

(T2S stands for ”3D to stereo”) be the function corre-
sponding to these transformations. It is useful to also
defineS2T (), the inverse function of T2S():

(α, β, λ) = S2T(pl,pr), (8)

Alternatively, we refer to T2S as ”projection” and to
S2T as ”back-projection.”

3.3 Color-based measurement model

Initially, at time k = 0, the projections of the target
on the image planes are delineated manually and de-
scribed by means of two elliptical regions with the
half axesHu andHv. Let these regions be denoted
by Rl,0 = R(pl,0, 1) (in the left image) andRr,0 =
R(pr,0, 1) (in the right image), whereR(p, s) is an
elliptical region of centerp and scale factors with
respect to the initial ellipse(Hu,Hv). Subsequently,
tracking the object throughout the stereo image se-
quence localizes the object at timek within the re-
gionsRl,k = R(pl,k, sk) andRr,k = R(pr,k, sk),
wheresk is the scale at timek. Note that the scale of
the object in the image is inverse proportional withλ
and therefore can be estimated by

sk = λ0/λk, (9)

whereλ0 is initial target range and is found by back-
projectingpl,0 andpr,0.

The appearance of a target confined to the image
regionR(p, s) is described by means of a spatially-
weighted color (RGB) histogram (Comaniciu et al.,
2003) withB bins:

hR(u) = c
∑

r∈R

φ

(

‖r − p‖

H

)

δ[b(r)−u], u = 1, ..., B

wherec is a constant such that
∑B

u=1 h(u) = 1, b(r)
is a function mapping the color of the pointr into
a color bin,H = s

√

H2
u + H2

v , andφ is the kernel
function

φ(r) =

{

1 − r2, r < 1

0, otherwise
(10)

The target model consists of the color histograms of
the elliptic regionsRl,0 andRr,0. For simplicity, let
these histograms be denoted by

ql(u) , hRl,0
(u), qr(u) , hRr,0

(u) (11)
For k > 0, the similarity between the target model
q and the color modelh of a target candidate (in one
image) is assessed using the Bhattacharya distance,
defined as

d[q, h] =
√

1 − ρ[q, h], (12)

whereρ[q, h] =
∑B

u=1

√

q(u)h(u).
The Bayesian estimation paradigm entails speci-

fying the likelihood functionp(zk|xk) of the state
xk given the measurementzk. Note that, in our
case, the measurement consists of color stereo im-
ages,zk = {Il,k, Ir,k}. Dropping the time indexk
for convenience, the likelihood can be expressed as
p(Il, Ir|x) = p(Il, Ir|α, β, λ) = p(Il|∆, Ir)p(Ir|∆),

(13)

where∆ , (pl,pr, s) and(pl,pr) = T2S(x). For
the partial likelihoodp(Ir|∆), we use the formulation
from (Perez et al., 2002)(Nummiaro et al., 2003):

p(Ir|∆) = p(Ir|R(pr, s)) ∝ exp

{

−
d2[qr, hRr

]

2σ2
r

}

,

(14)
whered is given by (12) andσ2

r is a design parameter
which plays the role of a measurement error variance.

The image correlation likelihoodp(Il|∆, Ir) quan-
tifies the matching between the Bhattacharya distance
in the left and right image and is modeled here as a
Gaussian function of the distance difference:

p(Il|∆, Ir) = p(Il|R(pl, s),R(pr, s), Ir)

∝ exp

{

−
(d[ql, hRl

] − d[qr, hRr
])2

2σ2
c

}

(15)

whereσc is a design parameter. Plugging (14) and
(15) into (13) yields
p(Il, Ir|x)

∝ exp

{

−
d2[qr, hRr

]

2σ2
r

−
(d[ql, hRl

] − d[qr, hRr
])2

2σ2
c

}

(16)
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3.4 Particle filter algorithm

For non-linear, non-Gaussian and multi-modal mod-
els, as the one described here, the particle filter (Aru-
lampalam et al., 2002) provides a Monte Carlo solu-
tion to the recursive filtering equationp(xk|z1:k) ∝
p(zk|xk)

∫

p(xk|xk−1)p(xk−1|z1:k−1) necessary for
tracking. Starting with a weighted particle set
{(x

(i)
k−1, w̃

(i)
k−1)}

N
i=1 approximately distributed ac-

cording top(xk−1|z1:k−1), the particle filter proceeds
by predicting new samples from a suitably chosen
proposal distribution which may depend on the old
state and the current and previous measurements, i.e.
x

(i)
k ∼ q(xk|x

(i)
k−1, z1:k). To maintain a consistent

sample, the new particle weights are set to

w
(i)
k ∝

p(zk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, z1:k)

w̃
(i)
k−1. (17)

After weight normalization, the new particle set
{(x

(i)
k , w̃

(i)
k )}N

i=1 is then approximately distributed
according top(xk|z1:k). The particles are resampled
according to their weights to avoid degeneracy.

Particle filters suffer from the curse of dimension-
ality, i.e., as the dimension of the state-space in-
creases an exponentially increasing number of parti-
cles is required to maintain the same estimation ac-
curacy. To mitigate this phenomenon, we choose a
proposal density which biases the generation of the
particles towards the most-likely 3D location, while
it maintains predictive particles to handle the back-
ground clutter and recover from failure or tempo-
rary occlusion. More specifically,q(xk|xk−1, z1:k)
is a mixture between the state evolution distribu-
tion, p(xk|xk−1), and a Gaussian distribution whose
mean(α̂ms

k , β̂ms
k , λ̂ms

k ) is derived via stereo mean-
shift tracking and back-projection:

q(xk|x
(i)
k−1) = (1− γ)p(xk|x

(i)
k−1) + γN3(xk) (18)

whereγ ∈ (0, 1) is a mixing factor. The mean-shift
algorithm (Comaniciu et al., 2003) minimizes (12),
thereby finding a highly possible location of the target
in the image. The coefficientγ expresses our belief in
the mean-shift derived 3D target hypotheses, sampled
according to the density

N3(xk) = N (αk; α̂ms
k , σ2)N (βk; β̂ms

k , σ2)

· N (λk; λ̂ms
k , σ2).

(19)

The vector(α̂ms
k , β̂ms

k , λ̂ms
k ) is obtained as follows:

starting from the mean target positions in the left and
right image at timek − 1, p̂l(k − 1) andp̂r(k − 1),
we find via mean-shift the positions of the target at
time k, respectivelŷpms

l (k) andp̂ms
r (k), in the cur-

rent stereo imagesIl andIr. Further, from these two

Given the sample setSk−1 = {(x(i)
k−1, w̃

(i)
k−1)}

N
i=1

at timek − 1, obtainSk = {(x(i)
k , w̃

(i)
k )}N

i=1 as follows:

1. Importance sampling. For i = 1, . . . N , samplex(i)
k

based onx(i)
k−1 andq(xk|xk−1, z1:k):

• mean shift tracking and back-projection:

p̂
ms
l = MeanShift(p̂l(k − 1), Il)

p̂
ms
r = MeanShift(p̂r(k − 1), Ir)

(α̂ms, β̂ms, λ̂ms) = S2T(p̂ms
l , p̂ms

r )

• sampleu ∼ U(u; 0, 1)

• if u > γ, samplex(i)
k = (α(i), β(i), λ(i)) as follows:

α(i) ∼ p(αk|α
(i)
k−1) [see eq. (1)]

β(i) ∼ p(βk|β
(i)
k−1) [see eq. (2)]

λ(i) ∼ p(λk|λ
(i)
k−1) [see eq. (3)]

else, samplex(i)
k = (α(i), β(i), λ(i)) as follows:

α(i) ∼ N (αk; α̂ms, σ2) [see eq. (19)]

β(i) ∼ N (βk; β̂ms, σ2) [see eq. (19)]

λ(i) ∼ N (λk; λ̂ms, σ2) [see eq. (19)]

• projectx(i)
k to the image locationsp(i)

l ,p
(i)
r :

(p
(i)
l ,p(i)

r ) = T2S(α(i), β(i), λ(i)), s(i) = λ0/λ(i)

• computew(i)
k , the unnormalized weight ofx(i)

k , ac-

cording to (17,4,16,18); the likelihoodp(Il, Ir|x
(i)
k ) =

p(Il, Ir|p
(i)
r ,p

(i)
l , s(i)) (16) is computed based on the

histograms

h(i)
r , hRr (u), whereRr = R(p(i)

r , s(i)) ⊂ Ir

h
(i)
l , hRl

(u), whereRl = R(p
(i)
l , s(i)) ⊂ Il

2. Weight normalization: w̃
(i)
k = w

(i)
k /

PN

i=1 w
(i)
k

3. Estimation. Compute the mean state of the setSk, the
scale estimate, and the mean target positions in the left
and right image:

x̂k = (α̂k, β̂k, λ̂k) =
PN

i=1 w̃
(i)
k x

(i)
k , ŝk = λ0/λ̂k,

p̂l(k) =
PN

i=1 w̃(i)p
(i)
l , p̂r(k) =

PN

i=1 w̃(i)p
(i)
r

4. Target model update. Compute the occlusion/outlier
indicatoro = p(Il|p̂l, ŝ) + p(Ir|p̂r, ŝ) as the sum of
likelihoods (defined by(14)) of the elliptical regions of
scalês, centered at̂pl andp̂r respectively; ifo exceeds
a thresholdth1, we proceed to the target model update
(see Section 3.5).

5. Selective resampling: if the effective sample size

Neff =
hPN

i=1(w̃
(i)
k )2

i−1

is below a thresholdth2, apply a systematic resampling
step - see (Arulampalam et al., 2002).

Figure 3: Particle filter algorithm
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image locations, we can determine the 3D location
(α̂ms

k , β̂ms
k , λ̂ms

k ) by back-projection (8).
The outline of the particle filter algorithm for color-

based stereo target tracking is presented in Figure 3.

3.5 Target model update

Let p̂l and p̂r denote the estimates of the centers of
the target regions in the left and right image, respec-
tively. If the sum of likelihoods (14) of̂pl andp̂r are
higher than a threshold, it means that there is no out-
lier or occlusion at the estimated target position in the
image. Therefore, we can update the target model to
cope with illumination variations resulting in appear-
ance changes. The target models,ql(u) andqr(u), are
updated as in (Nummiaro et al., 2003):

ql(u) = (1 − a)ql(u) + ah
R̂l

(u), (20)

qr(u) = (1 − a)qr(u) + ah
R̂r

(u), (21)

whereu = 1, ..., B, R̂l = R(p̂l, ŝ), R̂r = R(p̂r, ŝ),
ŝ is the scale estimate, anda ∈ (0, 1) is a factor
weighting the color model of the target at the esti-
mated positionŝpr andp̂l. This evokes a forgetting
process whereby the contribution of a specific frame
decreases exponentially in time.

3.6 Camera control

The control scheme refers here only to the pan (az-
imuth) angleα. The control of the tilt (elevation)
angleβ can be done in the same manner. We use
a discrete Proportional-Integral-Derivative (PID) con-
troller given by

up

k = Kpek +Ki

Ts

Ti

k
∑

i=0

ei +Kd

Td

Ts

(ek − ek−1)+up
0

whereek is the estimate of the azimuth angle at time
k as delivered by the particle filter,ek = α̂k. The
parametersKp, Ki, Kd, Ti, Td are design constants
andTs is the sampling period.

4 ROBOT NAVIGATION

Two behavior-based architectures for robot naviga-
tion are presented here. The general idea behind
behavior-based approaches is to decompose a task in
simpler tasks that are easier to implement and test.
The challenge of this approach remains in how to
combine these different subtasks such that the global
task is executed in a robust manner. The robot naviga-
tion problem can be subdivided into two main parts:

• How to reach the goal location?

Goal (Person) 

Following Behavior 

Obstacle Avoidance 

Behavior
Exteroceptive

sensors

3D Goal Position

v, ω

Figure 4: Fuzzy-logic behavior based navigation controller

• How to avoid obstacles?

The presented solutions preserve this ambivalent
structure by providing a behavior-based navigation
strategy where two main behaviors process each one
of the questions raised above.

The robot navigation module produces as output a
heading direction for the robot and a speed setpoint,
usable on any mobile robotic platform. The speed set-
point depends directly on the distance to the target
person: if the robot is far away, it needs to accelerate
in order not to loose the person; when it approaches
the target, it must move with more caution to not hurt
the human. When the robot comes within one me-
ter of the target person, it will stop automatically, for
security reasons.

4.1 Fuzzy-logic behavior based
navigation controller

In this setup, depicted in Figure 4, each of the be-
haviors consists of a fuzzy logic controller relating
the input commands, i.e. the sensory data, to output
commands for the robot actuators. For the person-
following or goal-seeking behavior, the input comes
from the active stereo vision system, delivering the
3D position of the target person, whereas the obstacle
avoidance behavior uses exteroceptive sensor data to
find a path without colliding with obstacles.

4.2 Hybrid behavior based
navigation controller

We also exploit a hybrid architecture used for moving
in human-centered environments (Nuttin et al., 2003).
This architecture consists of a deliberative and a re-
active part. In this way, the advantages of both ap-
proaches are combined. The robot is able to reason
about how to reach a certain goal position, taking a
priori knowledge about the environment into account
if this is available. At the same time, it is able to re-
act very quickly to unmodeled obstacles in the envi-
ronment, by adopting a more direct coupling between
sensors and actuators. A multi-agent framework in
which behaviors can be specified conveniently was
developed for this goal, as in (Waarsing et al., 2003).

Figure 5 depicts the proposed architecture. The
navigation module as a whole calculates the linear
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Figure 5: Hybrid behavior based navigation controller

Figure 6: The Nomad200 and wheelchair with the active
stereo vision system

velocity and heading directionv andω of the robot,
given the current robot location (x, y, θ) and its un-
certainty, the robot’s global goal given by the active
vision module, the measured ranges from the exte-
roceptive sensors, and the odometry values. During
navigation, a global planner and a behavioral execu-
tion unit co-operate.

5 RESULTS AND DISCUSSION

The overall control strategy was tested on a No-
mad200 robot, which is a pure laboratorial robot used
for testing purposes. As such, the experimental results
which are shown in this section, are obtained with
this robot. For more real-world applications, we make
use of a mobile wheelchair platform. Both mobile ro-
bot platforms are shown in Fig. 6. For this research
project, we developed a totally independent stereo vi-
sion platform consisting of a PC, with a small LCD
screen. On top of the platform, a Biclops stereo head
is installed, carrying two high-resolution Pulnix color
cameras. The whole system is totally self sustainable
as it runs on its own power resources (six 10Ah bat-

Figure 7: Target tracking results: the white ellipse indicates
the goal which is tracked, the small circles represent the
different particles of the particle filter. The columns show
(1,2) stereo head tracking, (3) robot advancing to the target.

teries). The stereo vision platform can be seen on top
of the Nomad robot in Figure 6, while a model of the
stereo vision subsystem is shown in Figure 1.

The results of the person following application are
illustrated in Figure 7. With a number ofN = 70 par-
ticles andB = 8 × 8 × 8, the system is able to run in
real-time. As can be noticed, the tracker succeeds to
aim the stereo head towards the target person, with-
standing illumination changes and even though the
movement of this person was not easily predictable.
The robot navigates towards this person while avoid-
ing the obstacles on its way to come to a stop 2 meters
in front of the person.

To assess the ASVM’s performance as to the target
range estimation, we conducted an experiment where
a colored object is rotated with constant angular speed
in a plan parallel with the ground and at a height cor-
responding to that of the stereo head. In this case, the
range varies in a sinusoidal manner (see Figure 8). At
the beginning, there is a short stationary period nec-
essary for the ASVM to center the target in its field
of view. Note that the target range is tracked quite
accurately, with a small lag.

ICINCO 2005 - ROBOTICS AND AUTOMATION

38



0 50 100 150 200 250 300 350 400
1.6

1.8

2

2.2

time step

di
st

an
ce

 [m
]

Figure 8: Estimated target range (blue line) vs. ground truth
(gray line).

6 CONCLUSION

We have presented the active stereo vision (ASVM)
and navigation (NM) modules of a mobile robot sys-
tem designed for person following. The ASVM con-
trols a stereo head for tracking a target by means of a
color-based particle filter, robust to illumination vari-
ations, erratic target motions, and short occlusions.
To enforce the stereo constraint (the target regions
in the stereo images are correlated through the stereo
head-target 3D geometry), the measurement process
is formulated in the image plane, whereas the system
dynamics is based on the 3D position of the target.
Keeping the target in the ASVM’s field of view is
achieved by adjusting the pose of the stereo head via
a PID pan/tilt controller. Further, the estimate of the
3D target position is fed to the NM, which consists
of a behavior-based navigation controller. Two dif-
ferent navigation controllers were presented. Finally,
the concept was demonstrated by implementing it on
both a Nomad200 and a wheelchair platform.
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