
D3G2A: A DYNAMIC DISTRIBUTED DOUBLE GUIDED
GENETIC ALGORITHM FOR THE CASE OF THE

PROCESSORS CONFIGURATION PROBLEM

Sadok Bouamama, Khaled Ghédira
SOIE/University of Tunis

B. 204, departement of computer science
41, rue de la liberté, 2000 cité Bouchoucha. Tunisia

Keywords: Constraint satisfaction and optimization problems, multi-agent systems, genetic algorithms, Min-conflict-
heuristic, guidance operator.

Abstract: Within the framework of Constraint satisfaction and optimization problem (CSOP), we introduce a new
optimization distributed method based on Genetic Algorithms (GA). This method consists of agents
dynamically created and cooperating in order to solve the problem. Each agent performs its own GA on its
own sub-population. This GA is sometimes random and sometimes guided by both the template concept and
by the Min-conflict-heuristic. In addition with guidance, our approach is based on NEO-DARWINISM
theory and on the nature laws. In fact, by reference to their specificity the new algorithm will let the agents
able to count their own GA parameters. In order to show D3G2A advantages, experimental comparison with
GGA is provided by their application on the large processors configuration problem.

1 INTRODUCTION

CSP formalism (Tsang, 1993) consists of variables
associated with domains and constraints involving
subsets of these variables. A CSP solution is an
instantiation of all variables with values from their
respective domains. The instantiation must satisfy all
constraints.

In the realms of CSP, the instantiation of a
variable with a value from its domain is called a
label. A simultaneous instantiation of a set of
variables is called a compound label, which is a set
of labels. A complete compound label is one that
assigns values, from the respective domains, to all
the variables in the CSP.

A CSOP is a CSP with an objective function f that
maps every complete compound label to a numerical
value. The goal is to find a complete compound
label S such that f(S) gives an optimal value, and
that no constraint is violated. CSOPs make up the
framework to this paper.

CSOP which is NP-hard has been dealt with by
complete or incomplete methods. The first ones,
such as Branch and Bound (Tsang, 1993) are able to
provide an optimal solution. Unfortunately, the
combinatorial explosion thwarts this advantage. The
second ones, such as Guided Genetic Algorithms

(GGA) (Lau and Tsang, 1998) have the property to
avoid the trap of local optima. They also sacrifice
completeness for efficiency.
There is other distributed GAs known as Distributed
Guided Genetic Algorithms. These approaches have
been successfully applied to Max-CSP (Bouamama
and Ghedira, 2003, 2004). Basically these
distributed approaches outperform the Centralized
Genetic Algorithms (CGAs) (Lau, 1998), which are
especially known to be expensive in time. These
approaches give good results with the Max-CSPs, in
terms of both optimality and solution quality. Why
not to apply the same idea for CSOPs. This is the
aim of this paper. Our interest in GAs is also
motivated by their proven usefulness in many hard
optimization problems (DeJong, 1989)(Tsang,
1999), solving multiprocessor scheduling
problems(Tsujimura, 1993) (Michael et al., 1999).

2 CSOP FORMALISM

A constraint satisfaction and optimization problem,
or CSOP, is a quadruple (X, D, C, f); whose
components are defined as follows:
– X is a finite set of variables {x1, x2, ... xn}.

242 Bouamama S. and Ghédira K. (2005).
D3G2A: A DYNAMIC DISTRIBUTED DOUBLE GUIDED GENETIC ALGORITHM FOR THE CASE OF THE PROCESSORS CONFIGURATION
PROBLEM.
In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics, pages 242-247
DOI: 10.5220/0001181102420247
Copyright c© SciTePress

– D is a function which maps each variable in X to
its domain of possible values, of any type, and
Dxi is used to denote the set of objects mapped
from xi by D. D can be considered as D = {Dx1,
Dx2, …,Dxn};

– C is a finite, possibly empty, set of constraints on
an arbitrary subset of variables in X. these
constraints are represented in Extension or in
Intention.

– f an objective function which maps every
instantiation to a numerical value.

3 DYNAMIC DISTRIBUTED
DOUBLE GUIDED GENETIC
ALGORITHM FOR CSOP

3.1 Basic principles

Our approach draws basically on the concept of both
species and ecological niches. The species consists
of several organisms having common characteristics
whereas the ecological niche represents the task
performed by a given species. Goldberg sets that the
sexual differentiation based on specialization via
both the building of species and the exploitation of
ecological niches provides good results (Goldberg,
1989). A certain number of methods have been
settled in order to favorite the building of ecological
niches (Ghedira, 2002) in GAs.

So, the idea here is to partition the initial
population into sub-populations and to assign each
one of them to an agent called Species agent. A
given sub-population consists of chromosomes
having their fitness values in the same range. This
range, said FVR, is called the specificity of the
Species agent SpeciesFVR. Species agents are in
interaction, in order to reach an optimal solution for
the problem. For this reason, each Species agent
performs its own GA. The latter is guided by both
template (Tsang, 1999) concept and min-conflict
heuristic (Minton, 1992). An intermediary agent is
necessary between the society of Species agents and
the user, essentially to detect the best partial solution
reached during the dialogue between the Species.
This agent, called Interface, may also possibly create
new Species agents.

3.2 Min-Conflict-Heuristic and the
Template Concept

Each chromosome is attached to a template (Tsang,
1999) that is made up of weights referred to as

templatei,j. Each one of them corresponds to genei,j
where i refers to the chromosome and j to the
position. δi,j represents the sum of costs of violated
constraints by genei,j. These weights are updated by
means of the penalty operator (see sub-section 3.7).

Templates will be used by GA in replacement. As
we use the min-conflict-heuristic, replacement have
to be elitist, i.e a chromosome is replaced by a better
chromosome. For this, heavier templates genes have
more probability to be replaced.

3.3 Preparing CSOP

Relationship between both genetic and CSOP
formalisms is outlined as below; each chromosome
(respectively gene) is equivalent to a CSOP potential
solution (respectively variable). Moreover, each
allele corresponds to a value.

Given an objective function f, we define an
fitness function (FF) g which will be used by the
optimization process (Lau, 1998).

g(ps) = f(ps) + λ * Σ(CPi * Ii (ps)) (1)

Where ps is a potential solution, λ is a parameter

to the algorithm called Regularization parameter. It
is a parameter that determines the proportion of
contribution that penalties have in the fitness
function.

CPi is the penalty for genei (all CPi are initialized
to 0) and Ii is an indication of whether ps satisfies all
constraints or not:

Ii (ps) = 1 if ps satisfies all constraints;
 0 otherwise. (2)

Let us mention here that Ii is specific for every

genei. for this, we sum over the index i the Ii values
in order to express the contribution of every gene in
the solution.

3.4 Agent Structure

Each agent has a simple structure: its acquaintances
(the agents it knows and with which it can
communicate), a local knowledge composed of its
static and dynamic knowledge, and a mailbox where
it stores the received messages to be later processed
one by one.

3.4.1 Species Agent

A Specie agent has got as acquaintances the other
Specie agents and the Interface agent. Its static

D3G2A: A DYNAMIC DISTRIBUTED DOUBLE GUIDED GENETIC ALGORITHM FOR THE CASE OF THE
PROCESSORS CONFIGURATION PROBLEM

243

knowledge consists of the CSOP data (i.e. the
variables, their domains of values, the constraints
and the objective function), the specificity (i.e. the
fitness function range) and its local GA parameters
(mutation probability, cross-over probability,
number of generations, etc.). Its dynamic knowledge
takes components as the population pool, which
varies from one generation to another
(chromosomes, population size).

3.4.2 Interface Agent

An Interface agent has as acquaintances all the
Specie agents. Its static knowledge consists of the
∑CSP data. Its dynamic knowledge includes the best
chromosome (i.e. the chromosome having the best
fitness function value).

3.5 Global Dynamic

The Interface agent randomly generates the initial
population and then partitions it into sub-populations
accordingly to their specificities i.e. the fitness value
range FVR. After that the former creates Species
agents to which it assigns the corresponding sub-
populations. Then the Interface agent asks these
Species to perform their optimization processes. So,
before starting its own optimization process, i.e. its
own behaviour, each Specie agent, SpeciesFVR,
initializes all templates and penalties counters
corresponding to its chromosomes. After that it
carries out its genetic process on its initial sub-
population, i.e. the sub-population that the Interface
agent has associated to it at the beginning. This
process, which will be detailed in the algorithms,
returns a sub-population “pop” that has been
submitted to the crossing and mutating steps only
once, i.e. corresponding to one generation. For each
chromosome of pop, SpecieFVR computes their
fitness function values FV according to formula (1).
Consequently, two cases may occur. The first one
corresponds to a chromosome having an FV in the
same range as its parents. In this case, the
chromosome replaces one of the latter randomly
chosen. In the second case, this value (FV) is not in
the same range (FVR), i.e, the specificity of the
corresponding SpeciesFVR. Then the chromosome is
sent to another SpeciesFV if such agent already
exists, otherwise it is sent to the Interface agent. The
latter creates a new agent having FV as specificity
and transmits the quoted chromosome to it.
Whenever a new Species agent is created, the
Interface agent informs all the other agents about
this creation and then asks the new Species to

perform its optimization process. Note that message
processing is given a priority. So, whenever an agent
receives a message, it stops its behaviour, saves the
context, updates its local knowledge, and restores
the context before resuming its behaviour.

3.6 Guided Cross-over and Guided
Mutation

Out of each pair of chromosomes, the cross-over
operator produces a new child. The child inherits the
best genes, i.e. the “lighter” ones, from its parents.
The probability, for a parent chromosomei (i=i1 or
i2), where sum = templatei1,j + templatei2,j to
propagate its genei,j to its child chromosome is equal
to 1-templatei,j / sum. This confirms the fact that the
“lighter” genes, i.e. having the best FV, are more
likely than the other to be passed to the child.

For each one of its chromosomes selected
according to the mutation probability Pmut,
SpeciesFVR uses the min-conflict-heuristic first to
determine the gene (variable) involved in the worst
FV, secondly to select from this gene domain the
value that violates the minimal number of
constraints and finally to instantiate this gene with
this value. If all the Species agents did not meet any
better chromosome at the end of their behaviour or
they attain the stopping criterion, they successively
transmit one of their randomly chosen
chromosomes, linked to its specificity to the
Interface agent. The latter determines and displays
the best chromosome namely the one which have the
best FV.

3.7 Penalty Operator and Local
Optima Detector

To enhance the approach, the agents are given more
autonomy and more dynamicity. In fact, we add an
other GA’s parameter that we call LOD for local
optima detector. The latter represents the number of
generation in which the neighboring does not give
improvement, i.e. if the FV of the best chromosome
remains unchanged for a specific number of
generations; and so we can conclude that the agent
optimization sub-process is trapped in a local
optimum. In fact if the unchanged FV is lesser than
the last stationary FV then automatically LOD have
to be equal to one. Otherwise the LOD will remain
unchanged i.e. LOD is a parameter to the whole
optimization process and it will be dynamically
updated by every agent.

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

244

Let us mention that every SpecieFVR have to save
its best FV for the next generations. This will be
very useful not only in the case of stationary fitness
values, but also to select the best chromosome in the
species. In fact, if the best FV remain unchanged for
LODi generation, the process will be considered as
trapped in a local optimum. Thus for all the
chromosomes having this FV, the related penalty
counter PCi of all its genes is incremented by one.

As we are in an optimization case, every
SpecieAFR have to send its best chromosome to the
Interface Agent. The latter updates its local
knowledge by this information. This must be done
once after every generation. The Interface Agent
will, at every attempt, compare the best chromosome
he has with the best one sent by the species agents.
Only those having the best FV will be maintained.

When the optimization process settles on a local
optimum, the penalty of potential solution associated
to this local optimum is increased. This helps the
search process to escape from local optima, and
drives it towards other candidate solutions. It is
worth pointing out that a slight variation in the way
that penalties are managed could make all the
difference to the effectiveness of our approach. This
is done by incrementing its penalty value by 1:

 CPi = CPi + 1 (3)

3.8 Mutation and Guidance
Probability

The approach, as decribed until now, can not be
considered as a classic GA. In fact, in classic GAs
the mutation aims to diversify a considered
population and then to avoid the population
degeneration (Goldberg, 1989). In this approach,
mutation operator is used improperly since it is
considered as a betterment operator of the
considered chromosome. However, if a gene value
was inexistent in the population there is no way to
obtain it by cross-over process. Thus, it is sometimes
necessary to have, a random mutation in order to
generate the possibly missing gene values. Our
approach is a local search method. The first known
improvement mechanism of local search is the
diversification of the search process in order to
escape from local optima (Schiex, 1995). No doubt,
the simplest mechanism to diversify the search is to
consider a noise part during the process. Otherwise
the search process executes a random movement
with probability p and follows the normal
process with a probability 1-p (Schiex, 1995).

The mutating sub-process will change; for each
selected chromosome following mutation probability

Pmut, the mutation will be random with a
probability 1-Pguid and guided with a probability
Pguid. So that in the proposed mutating sub-process
it’s possible to destroy a given solution in order to
enhance exploration.

3.9 Dynamic Approach

The main interest of the second improvement is
based on the NEO-DARWINISM theory (Darwin,
1859) and on the laws of nature « The Preservation
of favoured races in the struggle for life ». This
phenomenon can be described, in nature, by an
animal society in which the strongest members are
luckier to be multiplied (so their crossing–over
probability is high). The power of these elements
allows them not to be infected by illnesses (mutation
is then at a lower rate). On the contrary case the
weakest limbs of these animals are frequently ill or
unable to combat illnesses (mutation is frequent),
usually this kind of animals can’t attract females
(reproduction is limited). In fact to cross-over a
strong species and to give more mutation possibility
for a weak species can be very worthy.

So, from now on Pcross and Pmut will be
function of fitness and of a newer operator called ε.
This operator is a weight having values from 0 to 1.

In the new optimization process, each species
agent proceeds with its own genetic process. Indeed
before starting the optimization process agents have
to count their parameters Pcross and Pmut on the
basis of their fitness values. For a given Species
agent three cases are possible as described by the
new genetic process

4 EXPERIMENTATION

4.1 Experimental design

The goal of our experimentation is to compare a
distributed implementation with a centralized one of
genetic algorithm enriched by both template concept
and min-conflict-heuristic. The first implementation
is referred to as Distributed Guided Genetic
Algorithm (D3G2A) whereas the second one as
Guided Genetic Algorithm (GGA). The
implementation has been done with ACTALK (BRI,
89), a concurrent object language implemented
above the Object Oriented language SMALLTALK-
80. This choice of Actalk is justified by its convivial
aspect, its reflexive character, the possibility of

D3G2A: A DYNAMIC DISTRIBUTED DOUBLE GUIDED GENETIC ALGORITHM FOR THE CASE OF THE
PROCESSORS CONFIGURATION PROBLEM

245

carrying out functional programming as well as
object oriented programming , and the simulation of
parallelism. In our experiments we uses the case of
the processor large configuration problem as
described and formulated in (Lau, 1998). In our
experiments we carry out 30 times the algorithms
and we take the average without considering
outliers. Concerning the GA parameters, all the
experimentations employ a number of generations
(NG) equal to 10, a size of initial population equal to
1000, a cross-over probability equal to 0,5, a
mutation probability equal to 0,2, a probability of
guidance equal to 0.5, LOD is equal to 3, λ equal to
10, ε is equal to 0.6. The performance is assessed by
the two following measures:
• Run time: the CPU time requested for solving a

problem instance,
• Satisfaction: the number of satisfied

constraints.
The first one shows the complexity whereas the

second recalls the quality. In order to have a quick
and clear comparison of the relative performance of
the two approaches. It’s tempting to note that
experimentation has been done and have the same
tendency of graphics for these cases 8,12,16,20 and
32 processors. This is why we choose to present
only the case of 16 and 32 processors.

4.2 Experimental results

The performance of the two approaches will be
compared as follow:
• For the same value of fitness, we compute the

time elapsed by each approch to attain it.
• For the same CPU time, we compute the fitness

value attained by the two approches.
Figures 1 and 2 illustrates the CPU time point of view,

and shows that the results provided by D3G2A are better
compared to those given by AGG. We mention that the
difference between two times becomes more significant
when one increases the value of the fitness function . This
proves that D3G2A requires less time to solve a given
problem. We have come to these results thanks to
agent interaction reducing GA temporal complexity.
In fact, the comunication between agents helps them
to in the solution investigation.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1000 1500 2000 2500 3000

fitness Values

C
P
U
 ti

m
e

D3G2A
GGA

Figure 1: Generated CPU Times for fixed fitness values in
the case of 16 processors

0
500

1000
1500
2000
2500
3000
3500
4000
4500

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

CPU time

Fi
tn

es
s

va
lu

es

D3G2A
GGA

Figure 2: Generated fitness values for fixed CPU Times
in the case of 16 processors

0

500000

1000000

1500000

2000000

2500000

1000 1500 2000 2500 3000

Fitness values

CP
U

tim
es

D3G2A
GGA

Figure 3: Generated CPU Times for fixed fitness values in
the case of 32 processors

The soltion quality (the fitness function value)

point of view is expressed in the figures 3 and 4. The
D3G2A always reaches, for a fixed time CPU, a
better value of the function fitness. This value is
more significant for more significant times CPU.
This clearly expresses the contribution in term of
quality of the found solution. this is the result of the
diversification and the intensification used in our
approach.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

20
00

00

50
00

00

75
00

00

10
00

00
0

12
50

00
0

15
00

00
0

17
50

00
0

20
00

00
0

CPU times

Fi
tn

es
s

va
lu

es

D3G2A
GGA

Figure 4: Generated fitness values for fixed CPU Times in
the case of 32 processors

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

246

5 CONCLUSION AND
PERSPECTIVES

We have developed a newer approach called D3G2A.
This approach is a dynamic distributed double
guided genetic algorithm enhanced by three new
parameters called guidance probability Pguid, the
local optima detector LOD and the weight ε,. The
latter is a weight used by Species agents to
determine their own genetic process parameters on
the basis of their chromosomes Fitness values.
Compared to the centralized guided genetic
algorithm and applied to LPCP, our new approaches
have been experimentally shown to be better in
terms of fitness value and CPU time.

The improvement is due to both diversification
and guidance. The first increases the algorithm
convergence by escaping from local optima
attraction basin. The latter helps the algorithm to
attain optima. Consequently D3G2A gives more
chance to the optimization process to visit all the
search space. We have come to this conclusion
thanks to the proposed mutation sub-process. The
latter is sometimes random, aiming to diversify the
search process, and sometimes guided in order to
increase the best of the fitness fonction value. The
genetic sub-process of D3G2A Species agents will no
longer be the same depending on their fitness values.
This operation is based on the species typology. The
sub-population of a species agent can be considered
as strong or weak with reference to its fitness value.
For a strong species, it’s better to increase cross-over
probability and to decrease mutation probability.
However, when dealing with a weak species, cross-
over probability is decreased and mutation
probability is increased. The occurrence of these
measures not only diversifies the search but also
explore wholly its space.

No doubt further refinement of this approach
would allow its performance to be improved. Further
works could be focused on applying these
approaches to solve real hard CSOPs like the radio
link frequency allocation problem

REFERENCES

Bouamama S, Ghédira K., 2004. ED3G2A: an enhanced
Version of the dynamic Distributed double Guided
Genetic Algorithms for Max_CSPs. In SCI’048th
World Multiconference on Systemics, Cybernetics and
Informatics. IIIS press.

Bouamama S, Ghédira K.,2003. D2G2A: a Distributed
double Guided Genetic Algorithm for Max_CSPs. In

KES’03 the 7th International Conference on
Knowledge-Based Intelligent Information &
Engineering Systems, Oxford, UK.

 Darwin C.1859, The Origin of Species, Sixth London
Editions, 1999.

 DeJong K. A. , 1989. Spears W. M., Using Genetic
Algorithms to solve NP-Complete problems. George
Mason University, Fairfax, VA.

Freuder E.C, Wallace R.J,1992. Partial Constraint
Satisfaction, Artificial Intelligence, vol. 58, p 21-70,.

Ghédira K & Jlifi B, 2002. A Distributed Guided Genetic
Algorithm for Max_CSPs. Journal of sciences and
technologies of information (RSTI), journal of
artificial intelligence series (RIA), volume 16
N°3/2002

Goldberg D.E.,1989. Genetic algorithms in search,
Optimization, and Machine Learning, Reading, Mass,
Addison-Wesley, 1989.

Holland J., 1975. Adaptation in natural and artificial
systems, Ann Arbor: The University of Michigan
Press.

 Lau, T. L. et Tsang, EPK., 1998. Solving the processor
configuration problem with the guided genetic
algorithm. In 10ème

 IEEE international conference on
Artificial Intelligence, Taiwan.

Michael B., Frank M., Yi P.,1999. Improved
Multiprocessor Task scheduling Using Genetic
Algorithms. In FLAIRS’ 99 twelfth International
Florida AI Research Society Conference, AAAI press,
p. 140-146.

Minton S. 1992. Minimizing conflicts a heuristic repair
method for constraint satisfaction and scheduling
problems. In Artificial Intelligence, volume 58 pages
161-205.

Schiex T., Fargier H. & Verfaillie G., 1995 Valued
constrained satisfaction problems: hard and easy
problems. In 14th IJCAI, Montreal, Canada august
1995.

Tsang EPK, 1993. Foundations of Constraints
Satisfaction. Academic Press Limited,

Tsang E.P.K, Wang C.J., Davenport A., Voudouris C.,
Lau T.L. 1999. A family of stochastic methods for
Constraint Satisfaction and Optimization. Technical
report University of Essex, Colchester, UK.

Tsujimura Y., Gen M., 1997. Genetic algorithms for
solving Multiprocessor Scheduling Problems. In the
1st Asia-Pacific Conference on Simulated Evolution
and Learning, LNAI, November 9-12, Springer, vol.
1285, p. 106-115.

D3G2A: A DYNAMIC DISTRIBUTED DOUBLE GUIDED GENETIC ALGORITHM FOR THE CASE OF THE
PROCESSORS CONFIGURATION PROBLEM

247

