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Abstract: Within the framework of Constraint satisfaction and optimization problem (CSOP), we introduce a new 
optimization distributed method based on Genetic Algorithms (GA). This method consists of agents 
dynamically created and cooperating in order to solve the problem. Each agent performs its own GA on its 
own sub-population. This GA is sometimes random and sometimes guided by both the template concept and 
by the Min-conflict-heuristic. In addition with guidance, our approach is based on NEO-DARWINISM 
theory and on the nature laws. In fact, by reference to their specificity the new algorithm will let the agents 
able to count their own GA parameters. In order to show D3G2A advantages, experimental comparison with 
GGA is provided by their application on the large processors configuration problem. 

1 INTRODUCTION 

CSP formalism (Tsang, 1993) consists of variables 
associated with domains and constraints involving 
subsets of these variables. A CSP solution is an 
instantiation of all variables with values from their 
respective domains. The instantiation must satisfy all 
constraints.  

In the realms of CSP, the instantiation of a 
variable with a value from its domain is called a 
label. A simultaneous instantiation of a set of 
variables is called a compound label, which is a set 
of labels. A complete compound label is one that 
assigns values, from the respective domains, to all 
the variables in the CSP. 

A CSOP is a CSP with an objective function f that 
maps every complete compound label to a numerical 
value. The goal is to find a complete compound 
label S such that f(S) gives an optimal value, and 
that no constraint is violated. CSOPs make up the 
framework to this paper. 

CSOP which is NP-hard has been dealt with by 
complete or incomplete methods. The first ones, 
such as Branch and Bound (Tsang, 1993) are able to 
provide an optimal solution. Unfortunately, the 
combinatorial explosion thwarts this advantage. The 
second ones, such as Guided Genetic Algorithms 

(GGA) (Lau and Tsang, 1998) have the property to 
avoid the trap of local optima. They also sacrifice 
completeness for efficiency.  
There is other distributed GAs known as Distributed 
Guided Genetic Algorithms. These approaches have 
been successfully applied to Max-CSP (Bouamama 
and Ghedira, 2003, 2004). Basically these 
distributed approaches outperform the Centralized 
Genetic Algorithms (CGAs) (Lau, 1998), which are 
especially known to be expensive in time. These 
approaches give good results with the Max-CSPs, in 
terms of both optimality and solution quality. Why 
not to apply the same idea for CSOPs. This is the 
aim of this paper. Our interest in GAs is also 
motivated by their proven usefulness in many hard 
optimization problems (DeJong, 1989)(Tsang, 
1999), solving multiprocessor scheduling 
problems(Tsujimura, 1993)  (Michael et al., 1999). 

2 CSOP FORMALISM 

A constraint satisfaction and optimization problem, 
or CSOP, is a quadruple (X, D, C, f); whose 
components are defined as follows: 
– X is a finite set of variables {x1, x2, ... xn}.  
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– D is a function which maps each variable in X to 
its domain of possible values, of any type, and 
Dxi is used to denote the set of objects mapped 
from xi by D.  D can be considered as D = {Dx1, 
Dx2, …,Dxn}; 

– C is a finite, possibly empty, set of constraints on 
an arbitrary subset of variables in X. these 
constraints are represented in Extension or in 
Intention.    

– f an objective function which maps every 
instantiation to a numerical value.  

3 DYNAMIC DISTRIBUTED 
DOUBLE GUIDED GENETIC 
ALGORITHM FOR CSOP 

3.1 Basic principles 

Our approach draws basically on the concept of both 
species and ecological niches. The species consists 
of several organisms having common characteristics 
whereas the ecological niche represents the task 
performed by a given species. Goldberg sets that the 
sexual differentiation based  on specialization via 
both the building of species and the exploitation of 
ecological niches provides good results (Goldberg, 
1989). A certain number of methods have been 
settled in order to favorite the building of ecological 
niches (Ghedira, 2002) in GAs. 

So, the idea here is to partition the initial 
population into sub-populations and to assign each 
one of them to an agent called Species agent. A 
given sub-population consists of chromosomes 
having their fitness values in the same range. This 
range, said FVR, is called the specificity of the 
Species agent SpeciesFVR. Species agents are in 
interaction, in order to reach an optimal solution for 
the problem. For this reason, each Species agent 
performs its own GA. The latter is guided by both 
template (Tsang, 1999) concept and min-conflict 
heuristic (Minton, 1992). An intermediary agent is 
necessary between the society of Species agents and 
the user, essentially to detect the best partial solution 
reached during the dialogue between the Species. 
This agent, called Interface, may also possibly create 
new Species agents. 

3.2 Min-Conflict-Heuristic and the 
Template Concept  

Each chromosome is attached to a template (Tsang, 
1999) that is made up of weights referred to as 

templatei,j. Each one of them corresponds to genei,j 
where i refers to the chromosome and j to the 
position. δi,j  represents the sum of costs of violated 
constraints by genei,j. These weights are updated by 
means of the penalty operator (see sub-section 3.7). 

Templates will be used by GA in replacement. As 
we use the min-conflict-heuristic, replacement have 
to be elitist, i.e a chromosome is replaced by a better 
chromosome. For this, heavier templates genes have 
more probability to be replaced. 

3.3 Preparing CSOP  

Relationship between both genetic and CSOP 
formalisms is outlined as below; each chromosome 
(respectively gene) is equivalent to a CSOP potential 
solution (respectively variable). Moreover, each 
allele corresponds to a value. 

Given an objective function f, we define an 
fitness function (FF) g which will be used by the 
optimization process (Lau, 1998). 

 
g(ps) = f(ps) + λ * Σ(CPi * Ii (ps))               (1) 
 
Where ps is a potential solution, λ is a parameter 

to the algorithm called Regularization parameter. It 
is a parameter that determines the proportion of 
contribution that penalties have in the fitness 
function. 

CPi is the penalty for genei (all CPi are initialized 
to 0) and Ii is an indication of whether ps satisfies all 
constraints or not: 

 
Ii (ps) =  1 if ps satisfies all constraints;  
               0 otherwise.                                    (2) 
 
Let us mention here that Ii is specific for every 

genei. for this, we sum over the index i the Ii values 
in order to express the contribution of every gene in 
the solution.  

3.4 Agent Structure 

Each agent has a simple structure: its acquaintances 
(the agents it knows and with which it can 
communicate), a local knowledge composed of its 
static and dynamic knowledge, and a mailbox where 
it stores the received messages to be later processed 
one by one. 

3.4.1 Species Agent 

A Specie agent has got as acquaintances the other 
Specie agents and the Interface agent. Its static 
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knowledge consists of the CSOP data (i.e. the 
variables, their domains of values, the constraints 
and the objective function), the specificity (i.e. the 
fitness function range) and its local GA parameters 
(mutation probability, cross-over probability, 
number of generations, etc.). Its dynamic knowledge 
takes components as the population pool, which 
varies from one generation to another 
(chromosomes, population size). 

3.4.2 Interface Agent 

An Interface agent has as acquaintances all the 
Specie agents. Its static knowledge consists of the 
∑CSP data. Its dynamic knowledge includes the best 
chromosome (i.e.  the chromosome having the best 
fitness function value). 

3.5 Global Dynamic 

The Interface agent randomly generates the initial 
population and then partitions it into sub-populations 
accordingly to their specificities i.e. the fitness value 
range FVR. After that the former creates Species 
agents to which it assigns the corresponding sub-
populations. Then the Interface agent asks these 
Species to perform their optimization processes. So, 
before starting its own optimization process, i.e. its 
own behaviour, each Specie agent, SpeciesFVR, 
initializes all templates and penalties counters 
corresponding to its chromosomes. After that it 
carries out its genetic process on its initial sub-
population, i.e. the sub-population that the Interface 
agent has associated to it at the beginning. This 
process, which will be detailed in the algorithms, 
returns a sub-population “pop” that has been 
submitted to the crossing and mutating steps only 
once, i.e. corresponding to one generation. For each 
chromosome of pop, SpecieFVR computes their 
fitness function values FV according to formula (1). 
Consequently, two cases may occur. The first one 
corresponds to a chromosome having an FV in the 
same range as its parents. In this case, the 
chromosome replaces one of the latter randomly 
chosen. In the second case, this value (FV) is not in 
the same range (FVR), i.e, the specificity of the 
corresponding SpeciesFVR. Then the chromosome is 
sent to another SpeciesFV if such agent already 
exists, otherwise it is sent to the Interface agent. The 
latter creates a new agent having FV as specificity 
and transmits the quoted chromosome to it. 
Whenever a new Species agent is created, the 
Interface agent informs all the other agents about 
this creation and then asks the new Species to 

perform its optimization process. Note that message 
processing is given a priority. So, whenever an agent 
receives a message, it stops its behaviour, saves the 
context, updates its local knowledge, and restores 
the context before resuming its behaviour. 

3.6 Guided Cross-over and Guided 
Mutation 

Out of each pair of chromosomes, the cross-over 
operator produces a new child. The child inherits the 
best genes, i.e. the “lighter” ones, from its parents. 
The probability, for a parent chromosomei (i=i1 or 
i2), where sum = templatei1,j + templatei2,j to 
propagate its genei,j to its child chromosome is equal 
to 1-templatei,j / sum. This confirms the fact that the 
“lighter” genes, i.e. having the best FV, are more 
likely  than the other to be passed to the child.  

For each one of its chromosomes selected 
according to the mutation probability Pmut, 
SpeciesFVR uses the min-conflict-heuristic first to 
determine the gene (variable) involved in the worst 
FV, secondly to select from this gene domain the 
value that violates the minimal number of 
constraints and finally to instantiate this gene with 
this value. If all the Species agents did not meet any 
better chromosome at the end of their behaviour or 
they attain the stopping criterion, they successively 
transmit one of their randomly chosen 
chromosomes, linked to its specificity to the 
Interface agent. The latter determines and displays 
the best chromosome namely the one which have the 
best FV. 

3.7 Penalty Operator and Local 
Optima Detector 

To enhance the approach, the agents are given more 
autonomy and more dynamicity. In fact, we add an 
other GA’s parameter that we call LOD for local 
optima detector. The latter represents the number of 
generation in which the neighboring does not give 
improvement, i.e. if the FV of the best chromosome 
remains unchanged for a specific number of 
generations; and so we can conclude that the agent 
optimization sub-process is trapped in a local 
optimum. In fact if the unchanged FV is lesser than 
the last stationary FV then automatically LOD have 
to be equal to one. Otherwise the LOD will remain 
unchanged i.e. LOD is a parameter to the whole 
optimization process and it will be dynamically 
updated by every agent. 
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Let us mention that every SpecieFVR have to save 
its best FV for the next generations. This will be 
very useful not only in the case of stationary fitness 
values, but also to select the best chromosome in the 
species.  In fact, if the best FV remain unchanged for 
LODi generation, the process will be considered as 
trapped in a local optimum. Thus for all the 
chromosomes having this FV, the related penalty 
counter PCi of all its genes is incremented by one. 

As we are in an optimization case, every 
SpecieAFR have to send its best chromosome to the 
Interface Agent. The latter updates its local 
knowledge by this information. This must be done 
once after every generation. The Interface Agent 
will, at every attempt, compare the best chromosome 
he has with the best one sent by the species agents. 
Only those having the best FV will be maintained. 

When the optimization process settles on a local 
optimum, the penalty of potential solution associated 
to this local optimum is increased. This helps the 
search process to escape from local optima, and 
drives it towards other candidate solutions. It is 
worth pointing out that a slight variation in the way 
that penalties are managed could make all the 
difference to the effectiveness of our approach. This 
is done by incrementing its penalty value by 1: 

           CPi = CPi + 1                                   (3) 

3.8 Mutation and Guidance 
Probability 

The approach, as decribed until now, can not be 
considered as a classic GA. In fact, in classic GAs 
the mutation aims to diversify a considered 
population and then to avoid the population 
degeneration (Goldberg, 1989). In this approach, 
mutation operator is used improperly since it is 
considered as a betterment operator of the 
considered chromosome. However, if a gene value 
was inexistent in the population there is no way to 
obtain it by cross-over process. Thus, it is sometimes 
necessary to have, a random mutation in order to 
generate the possibly missing gene values. Our 
approach is a local search method. The first known 
improvement mechanism of local search is the 
diversification of the search process in order to 
escape from local optima (Schiex, 1995). No doubt, 
the simplest mechanism to diversify the search is to 
consider a noise part during the process. Otherwise 
the search process executes a random movement 
with probability p and follows the normal 
process with a probability 1-p (Schiex, 1995). 

The mutating sub-process will change; for each 
selected chromosome following mutation probability 

Pmut, the mutation will be random with a 
probability 1-Pguid and guided with a probability 
Pguid. So that in the proposed mutating sub-process 
it’s possible to destroy a given solution in order to 
enhance exploration.  

3.9 Dynamic Approach 

The main interest of the second improvement is 
based on the NEO-DARWINISM theory (Darwin, 
1859) and on the laws of nature « The Preservation 
of favoured races in the struggle for life ». This 
phenomenon can be described, in nature, by an 
animal society in which the strongest members are 
luckier to be multiplied (so their crossing–over 
probability is high). The power of these elements 
allows them not to be infected by illnesses (mutation 
is then at a lower rate). On the contrary case the 
weakest limbs of these animals are frequently ill or 
unable to combat illnesses (mutation is frequent), 
usually this kind of animals can’t attract females 
(reproduction is limited). In fact to cross-over a 
strong species and to give more mutation possibility 
for a weak species can be very worthy.  

So, from now on Pcross and Pmut will be 
function of fitness and of a newer operator called ε. 
This operator is a weight having values from 0 to 1. 

In the new optimization process, each species 
agent proceeds with its own genetic process. Indeed 
before starting the optimization process agents have 
to count their parameters Pcross and Pmut on the 
basis of their fitness values. For a given Species 
agent three cases are possible as described  by the 
new genetic process  

4 EXPERIMENTATION 

4.1 Experimental design 

The goal of our experimentation is to compare a 
distributed implementation with a centralized one of 
genetic algorithm enriched by both template concept 
and min-conflict-heuristic. The first implementation 
is referred to as Distributed Guided Genetic 
Algorithm (D3G2A) whereas the second one as 
Guided Genetic Algorithm (GGA). The 
implementation has been done with ACTALK (BRI, 
89), a concurrent object language implemented 
above the Object Oriented language SMALLTALK-
80. This choice of Actalk is justified by its convivial 
aspect, its reflexive character, the possibility of 
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carrying out functional programming as well as 
object oriented programming , and the simulation of 
parallelism. In our experiments we uses the case of 
the processor large configuration problem as 
described and formulated in (Lau, 1998).  In our 
experiments we carry out 30 times the algorithms 
and we take the average without considering 
outliers.  Concerning the GA parameters, all the 
experimentations employ a number of generations 
(NG) equal to 10, a size of initial population equal to 
1000, a  cross-over probability equal to 0,5, a 
mutation probability equal to 0,2, a probability of 
guidance equal to 0.5, LOD is equal to 3, λ equal to 
10, ε  is equal to 0.6. The performance is assessed by 
the two following measures: 
• Run time:  the CPU time requested for solving a 

problem instance,  
•  Satisfaction:  the number of satisfied 

constraints. 
The first one shows the complexity whereas the 

second recalls the quality. In order to have a quick 
and clear comparison of the relative performance of 
the two approaches. It’s tempting to note that 
experimentation has been done and have the same 
tendency of graphics for these cases 8,12,16,20 and 
32 processors. This is why we choose to present 
only the case of  16 and 32 processors. 

4.2 Experimental results 

The performance of the two approaches will be 
compared as follow: 
• For the same value of fitness, we compute the 

time elapsed by each approch to attain it. 
• For the same CPU time, we compute the fitness 

value attained by the two approches. 
Figures 1 and 2 illustrates the CPU time  point of view, 

and shows that the results provided by D3G2A  are better 
compared to those given by AGG.  We mention that the 
difference between two times becomes more significant 
when one increases the value of the fitness function .  This 
proves that D3G2A requires less time to solve a given 
problem. We have come to these results thanks to 
agent interaction reducing GA temporal complexity. 
In fact, the comunication between agents helps them 
to in the solution investigation. 
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Figure 1: Generated CPU Times  for fixed fitness values in 
the case of 16 processors 
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Figure  2: Generated fitness values for fixed CPU Times  
in the case of 16 processors 
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Figure 3: Generated CPU Times  for fixed fitness values in 
the case of 32 processors 

 
The soltion quality (the fitness function value) 

point of view is expressed in the figures 3 and 4. The 
D3G2A always reaches, for a fixed time CPU, a 
better value of the function fitness.  This value is 
more significant for more significant times CPU.  
This clearly expresses the contribution in term of 
quality of the found solution. this is the result of the 
diversification and the intensification used in our 
approach.
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Figure 4: Generated fitness values for fixed CPU Times  in 
the case of 32 processors 
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5 CONCLUSION AND 
PERSPECTIVES 

We have developed a newer approach called D3G2A. 
This approach is a dynamic distributed double 
guided genetic algorithm enhanced by three new 
parameters called guidance probability Pguid, the 
local optima detector LOD and the weight ε,. The 
latter is a weight used by Species agents to 
determine their own genetic process parameters on 
the basis of their chromosomes Fitness values. 
Compared to the centralized guided genetic 
algorithm and applied to LPCP, our new approaches 
have been experimentally shown to be better in 
terms of fitness value and CPU time.  

The improvement is due to both diversification 
and guidance. The first increases the algorithm 
convergence by escaping from local optima 
attraction basin. The latter helps the algorithm to 
attain optima. Consequently D3G2A gives more 
chance to the optimization process to visit all the 
search space. We have come to this conclusion 
thanks to the proposed mutation sub-process. The 
latter is sometimes random, aiming to diversify the 
search process, and sometimes guided in order to 
increase the best of the fitness fonction value. The 
genetic sub-process of D3G2A Species agents will no 
longer be the same depending on their fitness values. 
This operation is based on the species typology. The 
sub-population of a species agent can be considered 
as strong or weak with reference to its fitness value. 
For a strong species, it’s better to increase cross-over 
probability and to decrease mutation probability. 
However, when dealing with a weak species, cross-
over probability is decreased and mutation 
probability is increased. The occurrence of these 
measures not only diversifies the search but also 
explore wholly its space. 

No doubt further refinement of this approach 
would allow its performance to be improved. Further 
works could be focused on applying these 
approaches to solve real hard CSOPs like the radio 
link frequency allocation problem 
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