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Abstract:  A discrete control using different possible discretization models of a continuous plant is presented. The 
different models of the scheme are obtained from a set of different discretizations of a continuous transfer 
function under a fractional-order-hold of correcting gain [ 1,1]β ∈ −  (β-FROH). The objective is to design a 
supervisory scheme which is able to find the most appropriate value for the gain β in an intelligent design 
framework. A tracking performance index evaluates each possible discretization and the scheme chooses the 
one with the lowest value. Two different methods of adjusting this value are presented and discussed. The 
first one selects it among a fixed set of possible values, while in the second one the value of β  can be 
updated by adding or subtracting a small quantity. Simulations are presented to show the usefulness of the 
scheme. 

1 INTRODUCTION 

This paper deals with the problem of controlling a 
known continuous plant using an appropriate 
discrete controller selected from a group of possible 
ones. Each possible controller is associated to a 
different discretization of the plant (Alonso-Quesada 
and De la Sen, 2004; Broeser, 1995; Ibeas et al. 
2002; Middleton et al. 1988; Narendra and 
Balakrishnan, 1995 and 1998). A fractional order 
hold is used in order to generate the continuous input 
from the discrete signal. The choice of the β  gain 
of the FROH device should be taken into account, 
since the discretization zeros depend on its election 
(Åström and Wittenmark, 1984; Bárcena et al., 
2000; Ishitobi, 1996). In order to find the most 
appropriate discretization of the continuous plant, 
two different methods are proposed. In the first one, 
a set of fixed values of β  are used to generate a 
group of discretization models. Obviously, only one 
value of β  can be used at each time, but since the 
plant is supposed to be known we can simulate the 
behavior of all the possible discretization. A tracking 
index evaluates the performance of all of them and 
the system uses the one with the lowest value to 
implement the FROH device and the control law. In 
the second method, we only allow the system to 

update the value of β  to a close one. The behavior 
of the current discretization is compared with the 
behavior of other two possible discretizations. One 
model using a gain β  being slightly larger and the 
other one using a β  being a bit smaller. The second 
method has a slower convergence to an optimum 
value of β , but it avoids the transient in the output 
which may occurred when β  is changed a large 
value. Some computer simulations about two 
practical cases will be given in order to highlight the 
usefulness of the proposed multi-model scheme. In 
the first case, a DC motor is simulated. In the second 
one, we deal with a LCR parallel circuit (Tank 
circuit). 

2 PROBLEM DESCRIPTION 

In this paper, we are dealing with the problem of 
controlling a continuous plant by using a set of 
discrete controllers. Each of those controllers is 
associated to a different discretization of the 
continuous plant under a fractional order hold 
(FROH) with a correcting gain β. The plant 
continuous input signal obtained from a β-FROH 
follows this equation, 
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for ( )1s skT t k T≤ < + , where sT  is the sampling 
time, [ 1,1]β ∈ −  and ( )k su u kT=  is the input signal 
to the hold at st kT=  for each integer 0k ≥ . For 

0β =  and 1β =  the zero-order-hold (ZOH) and the 
first-order-hold (FOH) are obtained respectively. 
The discrete transfer function of a continuous one, 
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the transfer function of a β-FROH, Z the Z-transform 
and the polynomial degrees, 
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 and 

deg( )m B= . Moreover, 1n m= +  if 
deg( ) deg( )N D<  or n m=  if deg( ) deg( )N D= . 
Since the use of a ZOH is more common in practice 
than the use of a FROH, ( )H z  may be calculated 
just using ZOH devices in the following way, 
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where, 0
1( )

sTeh s
s

−−
=  is the transfer function of a 

ZOH device. The following standard assumptions 
are made: 
 
1-It is assumed that both polynomials ( )N s  and 

( )D s  are known.  
2-The reference model, /m m mH B A= , is 
exponentially stable, i.e. all the roots of mA  satisfy 

1z δ≤ −  for some ( ]0,1δ ∈ . 
3-There exists a known convex and compact subset 

2nD ⊆ℜ  of the parameter space where the real 
parameter vectors belong to so that for all plant 
parameterization in D the polynomials A and B are 
coprime.  

2.1 Basic adaptive controller 

The transfer function of the reference model is, 
'
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0 0
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where ' ( )mB z  contains the free-design reference 
model zeros, ( )B z−  is formed by the 
unstable(assumed known) plant zeros and 0 ( )A z  is a 
polynomial including the eventual closed-loop stable 
pole-zero cancellations which are introduced when 
necessary to guarantee that the relative degree of the 
reference model is non less than that of the closed-
loop system so that the synthesized controller is 
causal. A basic control scheme is displayed in figure 
2. Then, we will consider the polynomials kR , kS  
and T  (T depends only on the reference model zeros 
polynomial which is of constant coefficients) where 

'
0mT B A=  and kR (monic), kS  are the unique 

solutions with degrees fulfilling 
( )deg 2kR n i= − , ( )deg 1kS i= − , ( )0deg 2mA A n=  

of the polynomial diophantine equation 
0 1, 0k k k k k m k k k mA R B S B A A A R B S A A+ −+ = ⇔ + =   (5) 

with 1,k k kR B R=  at every sampling instant. Figure 1 
shows the control scheme. 
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Figure 1: Basic control scheme 
 
From (4)-(5), perfect matching is achieved through 
the control signal: 

,k c k k
T Su u y
R R

= −                           (6) 

2.2 Multimodel scheme A 

In order to find the most appropriate value of the 
gain β , we consider a set of possible design values 
of it and the corresponding discrete transfer function 
is obtained, 
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where mn  is the number of possible values of β  and 
( )β  is used to indicate its value for the th  model. 

Once all the possible discrete transfer function are 
obtained for the whole set of intended values, we can 
simulate the performance of all of them when the 
previous control law is applied and compared their 
responses with the desired reference output. 
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Figure  2: Multimodel scheme 

 
Each plant input is generated by using the control 
law (6), where the reference transfer function (4), 
which should be matched, is the corresponding 
FROH discretization of ( )mG s . In other words, we 
have as many reference transfer functions as the 
number of possible values of β  we are considering.  

2.3 Switching rule and identification 
performance index 

The objective of the supervisor is to evaluate the 
tracking performance of the possible controllers 
operating on the plant for the given reference model 
with the aim of choosing the current controller from 
the set of parallel controllers. The proposed 
performance index is: 
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for 1 mn≤ < , where, (0,1]λ ∈ and 0M >  are 
design real parameters. λ  is a forgetting factor 
which allows us to give more importance to the last 
time interval. 

2.4 Multimodel scheme B 

In this case, instead of letting the system to choose 
among any of the possible values of β , we only 

allow the system to change to a close value. The 
system starts with an arbitrary value and the tracking 
performance is compared with the tracking 
performance of two possible close values of β . One 
being a bit larger and the other one a bit lower. With 
this method, when we compare their responses, the 
system can only choose among three possible cases. 
In other words, nm is always three. However, these 
three possible values are not going to be constant 
and they are updated.  If the system chooses one of 
the two close values of β , then it becomes the 
active one and the other two are chosen by adding 
and subtracting a quantity to it. If the system chooses 
to maintain the same value of β , then the other two 
possible values are updated as well by considering 
other two closer values of β . In order to explain 
this method, the following algorithm describes how 
it works, 
 
a) At thk sample the active value of β  is kβ . Other 
two values, sup

k kβ β β= + ∆  and inf
k kβ β β= −∆  are 

used for simulation. Suppose that the last β  

switching took place at thk sample. 
b) If ( 1)k T kT MT+ − ≥ , then the tracking 
performance of the three possible discretizations are 
compared and the one with the lowest value of  (8) is 
used in the FROH device. 
c) If  the system chooses to maintain the same value 
of β , first β∆  is decreased and then supβ  and infβ  
are updated. 
- if  1k kβ β+ =  then / mfβ β∆ = ∆  (with 1mf > ) and 

          sup inf
1 1,k k k kβ β β β β β+ += + ∆ = − ∆  

d) If the system chooses another value, β∆  
maintains its value and supβ  and infβ  are calculated 
by adding and subtracting this value 
 - if sup

1k kβ β+ =  then sup
1 2k kβ β β+ = + ∆ , inf

1k kβ β+ =   
 - if inf

1k kβ β+ =  then sup
1k kβ β+ = , inf

1 2k kβ β β+ = − ∆  
 
Note that there are two supervisory hierarchized 
levels of action of this intelligent system, namely: 
 

1) The basic control: It consists of generating 
via uk from (5) for each of the discrete 
models integrated in the multi-model 
scheme. 

2) The choice of β : The model and gain β  
of the FROH is on-line selected by a 
switching rule via minimization of the 
supervisory performance index  (8).  
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3 SIMULATION RESULTS 

In this section two different cases are presented in 
order to show the usefulness of the proposed 
scheme. The first one simulates a DC motor, while 
the second one deals with a resonant circuit. In both 
cases, the two different multi model methods are 
used. 

3.1 DC motor 

A simple model of a DC motor driving an inertial 
loads shows the angular rate of the load, ( )w t , as the 
output and applied voltage, ( )appv t , as the input. The 
objective is to control the angular rate by varying the 
applied voltage (Krishnan, 2001). Fig 3 shows a 
standard model of the DC motor. 

Figure 3: DC motor model 
 
The transfer function of a DC motor can be 
described as: 

2

( )( )
( ) ( )

m

app f f b m

kw sG s
v s LJs LK JR s RK k k

= =
+ + + +

 

The simulation is done by using the following 
parameters, 

0.5R = Ω , 1.5L mH= , 0.05 /mk Nm A= , 
20.00025 / /J Nm rad s= , 0.0001 / /fk Nm rd s= , 

0.025 / /bk V rad s= , which give the continuous 
transfer function, 

7 2

0.05( )
3.75·10 0.0001252 0.0013

G s
s s−=
+ +

 

The first simulation uses the first multimodel case. 
The set of possible gains β  are:  

( ) 1 ( 1) /10i iβ = − −  for 1 21i≤ ≤  
The sampling time is chosen 0.1s and the residence 
time is 5 samples. The reference output is obtained 
from the following continuous transfer function, 

2

500000( )
200 12500mG s

s s
=

+ +
 

Figures 4 shows the plant output when the β  value 
is maintained fixed and when it is updated. The 
dotted line indicates the desired reference output. 
Figure 5 shows the active value of β  during the 
whole simulation. It is obvious that the tracking 
performance is improved by selecting an appropriate 
value of the gain β . 

 
Figure 4 a: Plant output with method A 

 

 
Figure 4 b: Plant output with method A (zoom over first 
seconds) 

 
Figure 5: active value of β  with method A 
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The simulation is repeated with the second 
multimodel method. Figure 6 shows the plant output 
and figure 7 the on-line active value of β  selecting 
via switchings using (8). The initial value for β∆ is 
0.2 and mf  is 1.2.  

 
Figure 6: Plant output with method B 

 
Figure 7: Active value of β  with method B 

 
In this case, it takes more time to achieve a good 
value of β  as we do not let it to take the best one in 
the first switching. One could think that this is a bad 
option. However, next simulation will show that 
sometimes this method have a better performance. 

3.2 Resonant Circuit (Tank Circuit) 

A resonant circuit is simply an LCR circuit with a 
zero-pole cancellation at 0s =  at the resonance 
frequency (Floyd, 2003).  

 
Figure 8: Parallel RLC circuit 

Usually the effect of the resistance is small 
compared to the size of the inductance and the 
capacitance. This leads to highly resonant behavior. 
In this work, we will consider a parallel RLC circuit 
with a transfer function, 

2

( )
( )

1( )
out

in

s
V s CG s

sI s s
RC LC

= =
+ +

 

The resonant frequency mw  of a resonant circuit is 
the frequency corresponding to the peak value of the 
transfer function and it occurs when 1/mw LC= . 
Simulations are performed for a circuit with 
parameters 100R = Ω , 2L mH=  and 300C pF= . 
Replacing these values, the transfer function results 
to be: 

7

2 7 12

3.333·10( )
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sG s
s s

=
+ +

 

The reference output is obtained from the following 
continuous transfer function: 

6

2 6 12
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sG s
s s
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The resonant frequency is located in 

205
2

m
m

w
f kHz

π
= = .  Both  multi-model schemes 

with the same parameters as in previous section are 
simulated. The reference input is generated as the 
sum of four of four sinusoidal signals of different 
frequencies {0.1wm, wm, 10wm, 100wm }. It is suited 
for the circuit to select the one at the resonant 
frequency. Figure 9 shows the plant output in both 
cases together with the reference output. In this case, 
although both outputs tend to the desired one, the 
second multi-model has a better transient behavior in 
the first time interval. This occurs, because when we 
change the value of β  in a big quantity, the plant 
behavior suffers a little transient as it can be shown. 
However, with small changes this transient is found 
to be smaller.  

 
Figure 9: Plant outputs using method 1 and 2 
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Finally, figures 10 and 11 show the active value of 
β  in both simulations.  

 
Figure 10: Active value of β  with method 1 

 

 
Figure 11: Active value of β  with method 2 

4 CONCLUSIONS 

In this paper, a multi-model based discrete control 
scheme for a continuous plant has been presented. 
The different discrete models are obtained by 
discretizing the continuous plant under a FROH 
device. The scheme is designed to find the value of 
the gain β  which leads to the best tracking 
performance. Two different methods have been 
presented for this purpose. The first one selects the 
current value of the gain among a fixed set of 
possible values. The second one updates β  only to a 
close value, avoiding bad transients which may 
occur when the changing is big.  Finally, the 
proposed schemes have been used in two practical 
cases. Simulations showed that an appropriate 
choice of the value of β  leads to a good tracking 
performance, even if a continuous plant is under 
control by a discrete controller.  Moreover, the 

advantages and disadvantages of both methods have 
been figured out through the simulation results.    
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