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Abstract: Besides their typical classification task, Self-Organizing Maps (SOM) can be used to approximate input-
output relations. They provide an economic way of storing the essence of past data into input/output support 
vector pairs. In this paper the SOLIM algorithm (Self-Organising Locally Interpolating Map) is reviewed 
and an extrapolation method is introduced. This framework allows finding one inverse of a nonlinear many-
to-one mapping by exploiting the inherent neighbourhood criteria of the SOM part. Simulations show that 
the performance of the mapping including the extrapolation is comparable to other algorithms.

1 INTRODUCTION 

Several derivates of Self-Organizing Maps (SOM) 
have been successfully applied to the control of 
nonlinear, dynamic processes, which can also have 
ambiguous inverse system behaviour (Barreto 2003). 

A very important enhancement of the classical 
SOM from Kohonen (overview in (Kohonen 2001)) 
has been the Local Linear Map (LLM) from Ritter et 
al. (Ritter  1992) that has been further developed and 
applied to various problems in robotics (Moshou 
1997) and system dynamics modelling (Principe 
1998)(Cho 2003). An LLM not only divides an input 
space into subspaces as a standard SOM does but 
assigns a local linear model to each subspace and 
thus performs a mapping to an output space. By de-
scending on the error function of the local models 
better estimates for these models are found. Re-
markable was the ability of the algorithm to learn a 
meaningful mapping for processes with an ambigu-
ous inverse behaviour. This effect results from ap-
plying Kohonen's self-organising rule to update the 
local model that has been responsible for the output 
and all of its neighbours. The drawbacks of the LLM 
are its discontinuities in the mapping at the transi-
tions between neighboured local models and the 
strong dependency of the learning performance on 
the Jacobians that define the linear models. 

To solve the discontinuity problem Aupetit et al. 
developed a continuous version of the LLM, the 
Continuous Self-Organizing Map (CSOM) (Aupetit 
1999)(Aupetit 2000), but still the mapping and the 
learning was depending on the Jacobians and, in 
addition, depending on interpolation parameters. 

Walter followed another approach by avoiding a 
discretisation of the input space and sharing the in-
fluence of each model on the output (Walter 
1997)(Walter 2000). The influences are found with 
help of an optimisation algorithm. On one hand this 
leads to a continuous mapping, which can be opti-
mised with respect to different user-defined criteria 
to resolve ambiguities. On the other hand this opti-
misation can be a relatively high computational load 
for high network dimensions. Furthermore, under 
certain conditions, there are problems with extrapo-
lation and the continuity of the mapping. 

The Self-Organising Locally Interpolating Map 
(SOLIM) from the author (Hülsen 2004a)(Hülsen 
2004b) interpolates between different models with-
out any additional parameters. Learning is per-
formed in a self-supervised structure, which can be 
interpreted as identification with exchanged input 
and output. The main drawback of this algorithm is 
the high computational effort for big networks, 
which is in great part due to the extrapolation princi-
ple. In addition, extrapolation was only performed in 
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a small area around the main mapping area. This 
paper will introduce a new extrapolation algorithm 
for the SOLIM. 

The paper is organised as follows: In the next 
section the fundaments of the SOLIM algorithm will 
be explained. In section three the new extrapolation 
principle will be presented in detail, followed by 
simulations in section four. The paper ends with the 
conclusion. 

2 SOLIM: SELF-ORGANIZING 
LOCALLY-INTERPOLATING 
MAP 

The SOLIM is a framework that shall perform two 
tasks in a control context (Figure 1): 
1. Map from a desired state of a process dg  to 

actuation parameters ap  to reach that state. 

2. Use that pair of measured state mg  and actua-

tion parameters ap  to adapt the mapping. 

 
Figure 1: Self-supervised learning (Barreto 2004) 

2.1 Mapping 

As in a standard SOM (Hagan 1996), the base of 
SOLIM is a grid c  of N  neurons with a certain 
topology (Figure 2). Each neuron i  is connected to 
an input support vector i G∈g  and an output sup-

port vector i P∈p . To perform the mapping G P→  

an influence weight if  with respect to the input vec-

tor dg  is calculated for each neuron. The output 

vector ap  is then the linear combination of all out-

put support vectors 

 a i i
i

f= ⋅∑p p% , (1.1) 
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The influence weights if  are measures of how close 

the input vector dg  is to the corresponding input 

support vectors ig . The influence weight is 1 for 

d i=g g  and decreases to 0 at the limits of the influ-

ence range of neuron i  (Figure 3). 

 
Figure 2: Mapping and learning with self-organizing maps 
(adopted from (Ritter 1992)) 

 
Figure 3: Influence if  of neuron i  for (a) a 1D grid in a 

1D input space and (b) a 2D grid in a 2D input space 

The limit j  of an influence range is defined 

solely by a selection of input support vectors jg . For 

the case of a 1D grid there are two limits for each 
input support vector (Figure 3(a)). When the grid is 
placed in a 1D input space the limits are points, in a 
2D input space the limits are lines and in a 3D input 
space the limits are planes. Now considering a 2D 
grid there are six limits for each input support vector 
(Figure 3(b)). When the grid is placed in a 2D input 
space the limits are lines and in a 3D input space the 
limits are planes again. In input spaces with higher 
dimensions the limits will be hyperplanes. 

A limit j  can generally be defined by a position 

vector ijg  and a plane normal ijn , whose calculation 

can be found in (Hülsen 2004b). The influence 
weight ijf  with respect to a limit j  is calculated 
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with help of the relative distance ijd  of the input 

vector dg  from ig  in the direction to the limit plane 
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A blending function ( )ij ijf b d=  sets the influence to 

0 for 1ijd > , to 1 for 0ijd <  and defines a transition 

for 0 1ijd< < , i.e. the change of the influence from 

one neuron to another. 
The influences to the limits j  are then combined to 

the influence of the neuron i  on the output vector 

 ( )mini ijj
f f= . (1.4) 

 Finally, it should be noted that the limits are de-
fined in a way that for a 1D grid two neurons are 
responsible for the output vector, for a 2D grid three 
neurons are responsible, for a 3D grid four neurons 
are responsible, and so on (see also (Hülsen 2004b)). 

2.2 Learning 

Learning is performed in the input space G  as well 
as in the output space P  with help of the Kohonen 
learning rule (Kohonen 2001). Following the rule 
not only the support vector of the "winner-neuron" 
w  is updated but to a certain extent ( ), ,h w i r  also 

the support vectors belonging to a neighbourhood r  
in the grid c  (see Figure 2). In case of learning in 
the input space the winner w  is the neuron with the 
highest influence with respect to the input vector 

dg , which in turn serves as an attractor for wg  and 

its neighbours 

 ( ) ( )( ) ( 1) ( ) ( 1), ,i i g g d ih w i rν ν ν νε− −= + ⋅ ⋅ −g g g g . (1.5) 

gε is a learning constant that, as the neighbourhood 

radius gr , is decreased with time. In case of learning 

in the output space the winner w  is the neuron with 
the highest influence with respect to the measured 
process output mg . Since the process input ap  be-

longs to mg , it can be used to find an estimate ep  

for wp  by solving (1.1) for i w=p  
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ep  then serves as attractor for wp  and its 

neighbours during the Kohonen update rule 

 ( ) ( )( ) ( 1) ( ) ( 1), ,i i p p e ih w i rν ν ν νε− −= + ⋅ ⋅ −p p p p . (1.7) 

The Kohonen learning rule is topology conserv-
ing, which means that support vectors of neurons 
that are neighbours in the grid c  become neighbours 
in the input space and output space. This property is 
an inherent criterion to resolve ambiguities in the 
inverse system behaviour G P→ , since neighbours 
in the input space map to neighbours in the output 
space. 

3 EXTRAPOLATION WITH 
SOLIM 

The main contribution of this paper is to show that 
extrapolation is possible within the context of the 
SOLIM-algorithm. Like the SOLIM-interpolation 
the extrapolation algorithm only needs to know the 
support vectors in the input and output space to per-
form a reasonably accurate extrapolation. The learn-
ing algorithm can be adapted to this enhanced map-
ping in a straight-forward manner. 

3.1 Mapping 

The mapping for regions outside the grid of input 
support vectors is performed by adding an extrapola-
tion component xip  to each support vector ip  prior 

to interpolating between them (Figure 4) 

 ( )a i i xi
i

f= ⋅ +∑p p p% . (1.8) 

 
Figure 4: Extrapolation component xip  corresponds to 

distance xi nil ⋅ g  of input vector from grid (1D grid) 

The extrapolation component is computed as 
 xi xi nil= ⋅p p , (1.9) 

where xil  is a weight that defines the distance of the 

input vector dg  from the input support vector ig  in 

relation to nig  (Figure 4, Figure 5) 
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nig  is the mean difference vector between the input 

support vector ig  and all input support vectors in its 

limiting neighbourhood iN  

 ( )
i

ni i k
k N∈

= −∑g g g . (1.11) 

Analogously, nip  is the mean difference vector be-

tween the output support vector ip  and all output 

support vectors in its limiting neighbourhood iN  

 ( )
i

ni i k
k N∈

= −∑p p p . (1.12) 

 
Figure 5: Calculation of xi nil ⋅ g  in a 2D grid 

The main idea behind the interpolation as well as 
the extrapolation mapping is that the relation be-
tween input vector and input support vector grid is 
similar to the relation between output vector and 

output support vector grid (Table 1). The weights if
%  

and xil  can therefore be applied in the input space in 

the same way as in the output space. In addition, 
since the calculation of the weights only depends on 
the dimension of the grid c  the mapping can be ap-
plied in both directions. 

Table 1: Similarity of mapping in input and output space 

input space output space 

( )d i i xi
i

f≈ ⋅ +∑g g g%  ( )a i i xi
i

f= ⋅ +∑p p p%  

xi xi nil= ⋅g g  xi xi nil= ⋅p p  

( )
i

ni i k
k N∈

= −∑g g g  ( )
i

ni i k
k N∈

= −∑p p p  

3.2 Learning 

The learning algorithm remains unchanged except 
that the calculation of the estimation ep  for the sup-

port vector wp  that is most responsible for the sys-

tem output mg  (compare (1.6)) must take the ex-

trapolation components into account. Therefore (1.8) 
must be solved for i w=p , using (1.9) and (1.12) 
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It can be seen that when the extrapolation weight for 

wp  is 0xwl =  (1.13) becomes similar to (1.6), be-

cause no extrapolation is performed. 

4 SIMULATIONS 

The performance of the extrapolation algorithm can 
be evaluated by mapping with support vectors that 
represent a 2D Gaussian bell and by learning the 
inverse of a well-known function. 

4.1 Mapping 

For a performance measurement of the mapping 5x5 
input support vectors ig  will be placed at the posi-

tions { },1 ,2, 0.1,0.3,0.5,0.7,0.9i ig g ∈ . The corre-

sponding output support vectors ip  will be placed at 

the corresponding positions of a 2D Gaussian bell 
with 0.5µ =  and 0.1σ =  (Figure 6) 

 
2 2

,1 ,21
exp

2
i i

i

g µ g µ

σ σ

⎛ ⎞⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎜ ⎟= − ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
p . (1.14) 

For this support vector constellation the SOLIM 
mapping in the range [ ],1 ,2, 0..1d dg g ∈  is shown in 

Figure 7. The RMS-error of 0.043 is comparable to 
other algorithms as stated in Table 2. 

 

Figure 6: 2D Gaussian bell in the range [ ],1 ,2, 0..1d dg g ∈  
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Figure 7: SOLIM-approximation (5x5 neurons) of 2D 
Gaussian bell in the range [ ],1 ,2, 0..1d dg g ∈  

Table 2: RMS-error for approximation of 2D Gaussian 
bell ( 0.5µ = , 0.1σ = ) with 25 support vectors in the 

range [ ],1 ,2, 0..1d dg g ∈ . Values from (Göppert  1997). 

Algorithm RMS-error 
local PSOM 0.049 
RBF 0.041 
CRI-SOM 0.016 
SOLIM 0.043 

 
To test the performance of the extrapolation 

functions the same mapping is shown in Figure 8 for 

a broader input range [ ],1 ,2, 0.5..1.5d dg g ∈ − . The 

extrapolation is reasonable but the error is relatively 
large (RMS-error = 0.063) because the falling slope 
at the borders is continued although the Gaussian 
bell approaches the zero-plane. This error can be 
decreased significantly by using more neurons that 
better represent the slopes, e.g. by placing 7x7 neu-
rons in the same area as shown in Figure 9 (RMS-
error = 0.025). 

4.2 Learning 

To validate the learning algorithm one inverse of the 
function 

 ( )g = 10 sin(p) + 1/3 sin(3p)⋅ ⋅  (1.15) 

shall be learned. In Figure 10 the result after 956 
learning steps can be seen, where the RMS-error is 
0.1% of the input vector range [ ]10..10dg ∈ − . The 

development of the error can be found in Figure 11. 
It can be seen that the SOLIM algorithm with the 
presented extrapolation can find one inverse to a 
many-to-one, non-linear function. 

 
Figure 8: SOLIM-approximation (5x5 neurons) of 2D 
Gaussian bell in the range [ ],1 ,2, 0.5..1.5d dg g ∈ −  

 
Figure 9: SOLIM-approximation (7x7 neurons) of 2D 
Gaussian bell in the range [ ],1 ,2, 0.5..1.5d dg g ∈ −  

 
Figure 10: Linear map with 10 neurons fits to 
one inverse of (1.15) after 956 iteration steps. 
RMS-error: 0.1% of dg -range 
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Figure 11: Development of RMS-error 

5 CONCLUSION 

It can be concluded that the presented algorithm has 
the following properties: 
• The extrapolation results from the interpolation 

between the slopes at the borders, which is cal-
culated from the border support vectors and 
their neighbours. 

• The interpolation as well as the extrapolation 
part only needs the input and output support 
vectors to perform a mapping. No interpolation 
factors and no local linear model matrices are 
required. The price is that only 0-order continu-
ity is ensured, which mostly is sufficient. 

• The mapping performance is comparable to 
other algorithms (PSOM, RBF, ...). 

• One mapping for ambiguous inverse system 
behaviour can be found within a sufficient 
number of iteration steps. Still a comparison to 
other algorithms is missing since there is no 
commonly accepted benchmark-system that can 
be easily set up. 

 
The following problems have not been solved yet: 
• The topology is still fixed and must be known a-

priori. There exist algorithms that dynamically 
build topologies and neighbourhood relation-
ships, depending on the input data "structure". 

• There are still learning parameters that must be 
tuned before each experiment and that partially 
vary depending on time. For online training 
these parameters must be varied automatically. 

• The presented algorithm shall be tested in a real 
application. One good demonstration is to learn 
non-linear, time-variant and many-to-one mo-
tion characteristics of microrobots (Hülsen 
2004a).  
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