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Abstract: The paper introduces entropy as a measure for 1D signals. We propose as entropy measure the relationship 
between the crest of the signal (i.e. its portion contained between the absolute minimum and maximum) and 
the energy of the signal. A linear transformation of 2D signals into 1D signals is also illustrated. The 
experimental results are compared to several fuzzy entropy measures and other well-known methods in 
literature. Experiments have been carried out on medical images from a large mammograms database; this 
choice is due to the high-degree of difficulty of this kind of images and the strong interest in the scientific 
community on medical images. The capability of the methods was tested in order to discriminate between 
benignant and malignant microcalcifications. 

1 INTRODUCTION 

The concept of entropy has been developed in 
thermodynamics in order to characterize the ability 
of a system in changing his status. Measures of 
system entropy are usually functions defined in the 
phase space and they reach the maximum or 
minimum value, depending on the contextual 
definition, whenever system variables are uniformly 
distributed.  

This concept has been borrowed in 
communication systems for coding purposes and 
data compression . Entropy based functionals have 
been also used in image and signal analysis to 
perform deconvolution and segmentation , to 
measure the pictorial information and to define 
image differences . 

Several entropy measures, defined on the feature 
space, have been introduced. The measure of the 
entropy in image classification is not a new one  ; 
the idea of cross entropy has been used to define the 
distance which is popularly known as Kullback-
Leibler information distance. 

However, this distance between two distributions 
should not be considered as the true distance, 
because it is not symmetric and does not satisfy the 
triangle inequality. It may be mentioned that in early 
sixties connections among statistics, quantum 
mechanics and information theory have been 

thoroughly studied by several authors , using 
Shannon maximum entropy principle. Caianiello 
proposed that such a connection can be obtained in 
the natural meeting ground of geometry. In the 
following we present two classes of entropic 
measures: the fuzzy entropy and the Vitulano’s 
entropy . 

The choice to use mammograms is due to the 
development of new imaging methods for medical 
diagnosis that has significantly widened the scope of 
the images available to physicians.  

The problem is to realize a mapping from the set 
of all possible images (image space) to the set – 
usually smaller – of all possible features value 
(feature space). 

2 RELATED WORKS 

Solutions proposed in literature follow different 
approaches and emphasize different aspects of the 
problem. In several CAD methods applied to 
mammography feature enhancement is carried out 
by evaluating the results due to wavelet transforms.  

The general approach consists of multiple steps: 

• computation of the forward wavelet transform 
of the image; 

• nonlinear transformation or adaptively 
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weighting of the wavelet coefficients; 
• computation of the inverse transform.  

A number of techniques have appeared in 
literature; differences among these approaches are 
related to the types of decomposition and 
reconstruction parameters taken into account. 

Our contribution to the analysis and CAD 
methods is to introduce an entropy measure of the 
signal in order to cluster microcalcifications in 
mammograms. 

3 METHODS 

As previously stated, two different entropy measures 
are introduced and their properties outlined: fuzzy 
and Vitulano’s method. 

Fuzzy entropy method may be summarized as 
follows: 

• computation of the fuzzy-entropy; fuzzy 
entropy is function of the distribution of the 
pixel grey levels. The entropy measures 
characterize the difference of the minimum 
intensity values distribution with respect to the 
mean intensity; 

• application of a Bayesian classifier in the new 
feature space. 

The Vitulano’s entropy method requires almost three 
different steps: 

• selection of nine disjoint Regions of Interest in a 
mammogram;  

• transformation of the related 2D signal into a 
1D signal;  

• computation of the entropy features 

3.1 Fuzzy entropies 

In this study four different types of fuzzy entropies 
are introduced. The term “fuzzy” is due to their 
characteristic to satisfy some of the formal 
properties of the classical entropy (introduced by 
Shannon); even if they are computed on image 
features that are not probabilities. 

The input image, ( )nff ,,1 …≡f , is represented as 
a linear signal after the transformation from raster to 
spiral indexing.  

Moreover, we define the vector ( )nhh ,,1 …≡h , where  
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Starting from these definitions we define the 
following measure of fuzzy entropies: 
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It is noteworthy that η gives a measure of the 
distance between the constant function f=m and the 
function h . Moreover, all these measures of entropy 
are convex and their values range in the interval 
[0,1]. The maximum of Gi (for i=0, 1 2) is equal to 1 
and is reached for η=0,5 while the maximum of 3G  
is reached for hi=n-1 and it is also equal to 1. Further 
details concerning fuzzy entropies here introduced 
can be found in Caianiello (see References). 

3.2 The Vitulano’s method 

There are different methods meant to read the 
information contained in a digital image: in rows, in 
columns, or by recurring to specific paths. The 
choice of the scansion method is connected to the 
type of information that somebody wants to pick out 
from the image (e.g. a certain recurrence in a 
direction, the search of the points of maximum or 
minimum of the surface image in order to carry out 
the histogram, the time of the calculus etc).  

Mapping a signal from 2D into 1D space is also 
one of the main step of our method; the use of the 
spiral method allowed us to perform the expected 
target (connected pixels, set of pixels that locate the 
regions of the image etc.). 

We define: Am,n as the domain of the surface 
image where (m, n) are respectively the number of 
rows and columns of A. 

Only out of simplicity of expression, we place 
m=n, i.e. A is a square matrix. 
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S-1 

Definition 1 
We define crown of the matrix C1 the set of the 

pixels 

C1={a1,1…a1,n; a2,n…am,n; am,n-1...am,1 ; am-1,1…a2,1} (5) 

that is, the order set of pixels contained in the row 
m=1 of the matrix, in the n-th column, in the m-th 
row, in the first column except the pixel, a1,1 since it 
is already contained in the first row. 

Let P is a discrete mono dimensional signal, so 
that: 

P(x) = Px1, Px2,….., Pxi,…Pxk 

Definition 2 
Therefore, we define first differential 
∆1Pxi = Px(i+1) - Pxi (6)  

Definition 3 
We define second differential: 
∆2Pxi =∆1Pxi - ∆1Px(i-1) (7) 

If we substitute the values ∆1Pxi -∆1Px(i-1)  

∆2Pxi = ∆1Pxi -∆1Px(i-1) = Px(i+1) - Pxi - (Pxi - Px(i-1) )=  

 =  Px(i+1) - 2Pxi  +  Px(i-1) 
It is easy to verify that for every pixel belonging 

to a crown of the matrix, the second differential 
assumes value 0. 

It is straightforward that considering three pixels, 
belonging to a crown, the relation (7) assumes value 
0, and they are 4-connected with respect to the 
central pixel. 

If we suppose Am,n a bidimensional signal and 
C1,……, Ck the crowns contained in its domain, we 
define joined spiral to the signal Am,n  the relation: 

iC
ki

UT
,1=

=   (8) 

where Ci  is the i-th crown obtained from the matrix 
Am,n. 

It is important to observe that the relation (8) 
realizes a linear reversible transformation of a 
generic signal in a space 2-D in a signal in a space 1-
D.  

Therefore it follows: 
 

Am,n                                    Tmxn (9) 
 
 
Due to (9) a one to one application is established 

between each of the elements tk belonging to T with 
each of the pixel ai,j of the matrix Am,n. 

The transformation S maintains the information 
regarding the form and the dimensions of the image 
domain, the topological information such as the 

number of the objects and their position, the area 
and the outline of the objects, etc.   

For example, we assume tk as the element to 
which corresponds the pixel ai,j, so the pixels 4-
connected to ai,j, correspond to the elements in T  for 
which the condition (10) is satisfied 

∆2tn = 0     or      ∆2tn = 8 (10) 
The pixels of a object in A are 4-connected, so : 
The area of the object is given by the set V, 

whose elements satisfy the relation (10); 
the contour of the object is given by the subset  
VV ∈1 whose elements contain almost a ground pixel 

among its 8-connected pixels;  
From the elements belonging to the set V1 we are 

able to extract the following information: 
• topological information – from the abscissa 

of a point belonging to T, we obtain the 
indexes of rows and columns of the pixels 
related to A; 

• the shape of the object – from the elements 
related to VV ∈1 , we are able to describe the 
shape of the object contained in A; 

• shape 3-D of the object – for each of the 
elements related to V, we compute: its 
location in the domain of A (index of row 
and column) and its grey level. So it is 
possible to have both the information over 
the 3-D shape and to reconstruct V pixel by 
pixel. 

In a previous work , we have proposed the HER 
(Hierarchical Entropy  based Representation) 
method, as the algorithm meant to realize the 
information retrieval from a multidimensional 
database. 

Briefly the relevant point about HER that a 1-D 
signal, T, may be represented by a string F, such: 
that: 

T≈ F= m1e1 ;  m2e2 ;…….. ; mkek (11) 

where {m}= m1,….., mk  are the maxima extract in a 
hierarchical way from T; 

and {e}= e1,….., ek   are the energies associated  to the 
maxima { }mmi ∈  

Let’s suppose a 1-D signal T, where m and M 
corresponding to the absolute minimum and 
maximum of T and ET its total energy . 

It is important to underline that m  and M  
aren’t either the smaller or the bigger of the ordinate 
of the points of T, but the minimum and the 
maximum of the signal T (in a mathematical sense). 

We define signal crest, C, the portion of the 
signal T between m and M. 

S
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In other words, the signal crest is obtained by 
placing the zero of the axes of ordinates equal to 
m . 

We assume Ec the energy of the crest signal C. 
We apply to the signal C the method HER , 

obtaining {mk} and {ek} as  the maxima and the 
energies of C respectively.  

Let { }keie ∈ the energy associated to the 
maximum { }kmim ∈  

Definition 4 
We define entropy of the signal T the relation: 

T

K

i
i

T E

e

S
∑
== 1     (12) 

It is straightforward that both the entropy of a 
constant signal (constant value of the function) and 
of a monotone signal (constant derivative) is equal 
to zero. 

On the other hand the entropy equal to 1 
corresponds to the maximum degree of disorder, i.e. 
there are not two points (xi, xi+1) in the signal 
domain that have the same ordinate. 

4 EXPERIMENTAL RESULTS 

An application on breast cancer mammograms was 
carried out in order to compare the behaviour of the 
different entropy measures above introduced.  

4.1 Experiment with fuzzy entropies  

Table 1 shows the mean values, µ, and the standard 
deviation, σ, of the distributions of G0, G1, G2, G3 
and for the two classes of malignant (MM) and 
benignant (MB) microcalcification.  

The result indicates that in the average the 
entropy of classes MM is greater than the entropy of 
class MB. The four measures have been used as a 
new features space, allowing a better discrimination 
among these classes of diseases. 

Table 1 
 µMM σMM µMB σMB 
G0 3.25 0.79 1.48 0.78 
G1 12.47 0.91 9.20 3.00 
G2 2.00 0.55 0.94 0.45 
G3 15.00 1.10 11.70 1.70 

4.2 Experiments with the entropy 
method  

Because of the strong interest in the detection of 
microcalcifications in mammograms  , we decided to 
test the Vitulano’s method with this kind of signals.  
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Figure 1a and b: Representation of the signal 
(obtained after the application of the spiral path) 
related to the parenchymal tissue for a benignant 
(top) and for a malignant (bottom) 
microcalcification. 
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The analysis of the signals of the 
microcalcifications highlights that for the malignant 
cases (Figure 1b) the impulses are characterized by a 
small amount of energy (impulse area), a significant 
shape and a remarkable value of the entropy in the 
bottom of the signal if compared to the signals of the 
benignant ones (Figure 1a). 

The results are summarized on Table 2 
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5   DISCUSSION AND FINAL 
REMARKS 

The experimental results show the role of the 
entropy in perception. In particular, the use of the 
Fourier transforms, wavelets and high pass filers do 
not show good performance unless of ad hoc tuning 
of given parameters. In fact, the shape, the power 
spectra or the approximation degree of the 
polynomial are not characteristics due to the nature 
of the signal.  

For our purpose the degree of disorder (entropy) 
of the image is an important indicator; in fact the 
texture disorder (parenchymal tissue structures) in 
the suspicious region of the image represents a 
significant component for a physician in the 
diagnosis of malignancy or benignancy. 

The methods proposed in this work get the guide 
reasons by observing that, when a malignant lesion 
comes up, not only it causes alterations in the 
parenchyma, but also increases its level of disorder. 

The experimental results are shown in Figure 2; 
we selected 175 images corresponding to a 
benignant or a malignant microcalcification. 

For each sample image we applied HER, by 
using the 70% of the crest energy; we wish to 
underline the fact that the results don’t change 
significantly by assuming the 50% or 90% of the 
crest energy. 

The graph of Figure 2 shows clearly two 
disjoined classes, corresponding to malignant and 
benignant microcalcifications. 

The analysis of the results show that the number 
of the extracted maxima is bigger for a malignant 
lesion, but the energy value associated with each of 

the maxima is higher for a benignant 
microcalcification. 

The comparison between the two signals shown 
in Figure 1 reveals that even if the number of the 
maxima is higher in the malignant lesion, the global 
value of the associated energy lessens with respect 
to the benignant case. By recurring to the principle 
of entropy-disorder we may conclude by saying that 
signals related to malignant microcalcifications are 
characterized by a bigger amount of the entropy with 
respect to benignant ones. 

In other words, we feel that the alterations 
concerning the same tissue, can be a valid measure 
or an increasing of the malignancy of the lesion. 

It is remarkable that the entropy measures of the 
signal do not require a large amount of operations, 
therefore it is less computational time consuming 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Malignant Benignant Method 

# Errors Percentage # Errors Percentage 
Fourier 70 51% 62 51% 
Vitulano’s 

Entropy 2 98,4% 3 97,6% 

HER 6 96% 5 96% 
Fuzzy Entropy 22 85% 6 95% 

Table 2: Results due to the Vitulano’s method when applied to microcalcification 
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Figure 2: Graphical representation of the two classes of benignant and malignant microcalcifications. 
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