DEVELOPMENT OF POWER ASSIST ON OMNI-DIRECTIONAL MOBILE WHEELCHAIR CONSIDERING OPERATIONALITY AND COMFORT

Juan Urbano, Kazuhiko Terashima, Takahiro Nishigaki, Takanori Miyoshi
Department of Production Systems Engineering, Toyohashi University of Technology
Hibarigaoka 1-1, Toyohashi, 441-8580, Japan

Hideo Kitagawa
Department of Electronic Control Engineering, Gifu National College of Technology
Kamimakuwa, Motosu, Gifu, 501-0495, Japan

Keywords: Omni-directional wheelchair, power assistant, fuzzy reasoning, tuning system, driving comfort.

Abstract: In this paper, a power assist system of Omni-directional Mobile Wheelchair (OMW) for attendants aiming at the reduction of incidence by operation of attendants is presented. The OMW presented in this paper, has 3 degrees of freedom, so it is important to consider operationality. The control system must be developed considering both operationality and comfort. A Power assist controller using fuzzy reasoning is proposed to estimate the navigation direction for the force given by the attendant, and the necessity of parameter tuning in the membership functions is described according to the individual characteristics. Further, the second order lag controller which transforms the force given by the attendant into the velocity of OMW, is presented to develop the rider’s comfort.

1 INTRODUCTION

An omni-directional wheelchair is highly maneuverable in narrow or crowded areas such as residences, offices and hospitals. Several kinds of omni-directional vehicles have been developed in robotics fields (West and Asada, 1992), (Pin and Killough, 1994); moreover, some of these have been applied to wheelchairs (Wada and Asada, 1999), (H. Kitagawa and K. Terashima, 2004), (Urbano et al., 2005). In these researches, new mechanism, hierarchical control and obstacle avoidance of wheelchairs are proposed. However, past researches on the motion control of omni-directional wheelchairs have not considered transport wheelchair that is pushed by an attendant. This paper proposes a novel power assist system for omni-directional transport wheelchairs.

A power assist system of an omni-directional vehicle has been developed in (H. Maeda and Yamashita, 2000). However, it still has some problems in rotation and in rider’s comfort since this system was developed for a food tray carry vehicle in a hospital.

The purpose of this research is to develop a power assist system for omni-directional transport wheelchairs considering attendant’s manipulability and rider’s comfort. A power assist controller using fuzzy reasoning is proposed to estimate the navigation direction for the force given by the attendant. Further, the second order lag controller which transforms the force given by the attendant into the velocity of OMW, is presented to develop the rider’s comfort.

2 OMNI-DIRECTIONAL WHEELCHAIR

An omni-directional wheelchair (OMW) using omni-wheels has been designed and built. Figure 1 is an overview of the OMW. The OMW is able to move in any arbitrary direction without changing the direction of the wheels.

Figure 1: Omni-directional wheelchair (OMW)
3 POWER ASSIST SYSTEM

3.1 First order controller for power assist

The first order controller converts the output signal of the force sensor \(F = [f_x, f_y, m]^T \) to the reference velocity \(V_{omw} = [v_x, v_y, \omega]^T \) of the OMW. The input force can be converted to the reference velocity by using a controller that contains an integral element. Moreover, the controller should also have viscosity as the following equation since the OMW have to stop safely when \(F \) becomes zero.

\[
G_i(s) = \frac{V_i(s)}{F_i(s)} = \frac{K_i}{T_i s + 1}, (i = x, y, m) \quad (1)
\]

The reference velocity \(V_{omw} \) exponentially converges to zero by using this controller when the attendant stop pushing the handle. If the time constant \(T_i \) is too small, the effect of vibration of input force or noise becomes large. If the time constant \(T_i \) is too large, the manipulability of the OMW becomes bad because of its slow response. In this paper, parameters were determined as \(K_x = 0.0003, K_y = 0.0002, K_m = 0.0007, T_x = 0.6, T_y = 0.75 \) and \(T_m = 0.75 \) by trial and error.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Antecedent</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(v_y > 0) and (\omega > 0)</td>
<td>(v_y^d > 0) (Right Slide)</td>
</tr>
<tr>
<td>2</td>
<td>(v_y > 0) and (\omega > 0)</td>
<td>(v_y^d < 0) (Left Slide)</td>
</tr>
<tr>
<td>3</td>
<td>(v_y \approx 0) and (\omega \approx 0)</td>
<td>(v_y^d \approx 0) (Not Slide)</td>
</tr>
<tr>
<td>4</td>
<td>(v_y \geq 0) and (\omega > 0)</td>
<td>(\omega^d > 0) (CCW Turn)</td>
</tr>
<tr>
<td>5</td>
<td>(v_y \leq 0) and (\omega < 0)</td>
<td>(\omega^d < 0) (CW Turn)</td>
</tr>
<tr>
<td>6</td>
<td>(v_y \approx 0) and (\omega \approx 0)</td>
<td>(\omega^d \approx 0) (Not Turn)</td>
</tr>
</tbody>
</table>

Table 2: Parameters of membership functions

<table>
<thead>
<tr>
<th>Rule Number</th>
<th>Antecedent</th>
<th>name</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YFS</td>
<td>7</td>
<td>0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ONS</td>
<td>7</td>
<td>-0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>YNS</td>
<td>7</td>
<td>0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>OPS</td>
<td>7</td>
<td>0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>YZS</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OZS</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>YPT</td>
<td>7</td>
<td>0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>OPT</td>
<td>7</td>
<td>0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>YNT</td>
<td>7</td>
<td>-0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ONT</td>
<td>7</td>
<td>-0.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>YZT</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>OZT</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Direction estimator of navigation for force input

When the user tries to rotate OMW around its gravity center, OMW begins to slide and the radius of rotation becomes very big. Then, rotation around the center is very difficult. For solving this problem, direction inference is developed by using the fuzzy rules shown in Table 1. The block diagram of the system is shown in Fig. 2. In order to establish the rules of direction inference, first, the force applied to the grips of the force sensor are changed to the center of OMW, as shown in Fig. 3. Note that the input of the direction estimator is velocity \(V_{omw} \), not force \(F \). It may seem more reasonable to use \(F \) for the estimation of the attendant’s intention, however, it is very difficult to derive transform equations from \(F \) because of an effect of vibration of input force or noise. \(v_x \) is not included since forward and backward motion can be realized without direction estimation. Features of slide motion is expressed by rules 1 and 2, and that of
rotation by rules 4 and 5. Rules 3 and 6 are added not to generate the reference velocity when input velocity is zero.

Figure 4 shows the graph of membership functions of the first rule. The membership function of the antecedent of 1, 2, 4 and 5 is

\[\mu_{\text{name}} = \tan^{-1}\left(a_{\text{name}}(\beta_i - b_{\text{name}}) \right) / \pi + 0.5 \] (2)

where \(\beta_i \) is input (\(\beta_1 = v_y, \beta_2 = \omega \)) and \(a_{\text{name}} \) and \(b_{\text{name}} \) are tuning parameters. ‘name’ is replaced by the name of each membership function. The first letter of ‘name’ of antecedents indicates sensor output (\(v_y, \omega, d \)), the second letter indicates sign (Positive:P, Negative:N, Zero:Z), and the third letter indicates realized motion (Slide:S, Turn:T).

\[\mu_{\text{name}} = \exp(-c_{\text{name}} \cdot \beta_i^2) \] (3)

where \(c_{\text{name}} \) is a tuning parameter

3.3 Experimental results

In order to verify the effectiveness of the control system, laboratory experiments were conducted. The results shown correspond to a first order controller. Parameters of the membership function of Fig. 4 are shown in Table 2.

The trajectory and velocity \(v_{\text{omw}} \) of slide motion to right are shown in Fig. 5 and Fig. 6, respectively. As seen in the trajectory of \(v_y \), vibration of the velocity was reduced. The trajectory and velocity \(v'_{\text{omw}} \) of rotation around its center in counter-clockwise are shown in Fig. 7 and Fig. 8, respectively. As seen in Fig. 7, the rotation around its center was realized by using the direction estimator. The effectiveness of the direction estimator is shown especially in case of rotation.

4 TUNING OF MEMBERSHIP FUNCTIONS

4.1 Necessity of tuning

Figure 9 shows the experimental results of using fuzzy reasoning, where a 60 year-old woman operated OMW. In Fig. 9, \(f \) is a force added by attendant, \(v_y \) is a velocity command, \((x_G, y_G)\) is the position of OMW in the global coordinates and \(\theta_y \) is a posture of OMW.

Here, OMW moves in the following order: Forward (1) ⇒ Backwards (2) ⇒ 180° Left rotation (3) ⇒ Right slide (4) ⇒ Left slide (5).

Then, Fig. 10 shows the results by fuzzy reasoning. Horizontal axis is a translation velocity \(v_y \) before fuzzy reasoning, vertical axis is a rotational velocity \(\omega \) before fuzzy reasoning, darkness degree in the cockpit indicator shows the translation velocity \(v_y' \) and the rotational command velocity \(\omega' \) after fuzzy reasoning, and the real line in Fig. 10 shows the \(v_y \) and \(\omega \) operated by attendant in order to get the obtained movement as shown in Fig. 9.

This woman uses the region of \(v_y > 0 \) and \(\omega \approx 0 \) while moving towards the right slide. However, while using the parameter of membership function used in the previous section, \(v_y' \approx 0.2 \) [m/s], and \(\omega' \approx 0.4 \) [rad/s] are estimated. Here, this woman intends to move towards right without rotation, but really moves towards right with rotation.

Figure 11 shows attendant’s intention representing direction to make OMW move using \(v_y \) and \(\omega \) added by attendant.

In the present fuzzy parameters given by the previous section, the attendant such as examinee I can operate OMW well.

On the other hand, the attendant such as examinee 2 wants to make OMW move towards right in the re-
Then, when fuzzy membership function is fixed for all examinees, the attendant having the tendency like examinee 2 feels the difficulty to operate OMW. Therefore, it is necessary to adjust the parameters of fuzzy membership functions according to the driving characteristics of individual persons.

4.2 Tuning system

The parameters in the membership functions are \{a_{name}, b_{name}, c_{name}\} as shown in "(2)" and "(3)".

The number of \{a_i, b_i, c_i\} \{i = name\} in Antecedent part of fuzzy rule is 20. However, the number of \{a_i, b_i\} is 16, because \(c_i\) doesn’t give a big effect on the whole result.

Here, \(a_{name}\) is related with the slope of membership function, while \(b_{name}\) is with shift quantity in the movement region. Therefore, the parameter of \(b_{name}\) is more effective one as the tuning parameter.

Then, eight parameters of \(b_{name}\) are tuned. Among them, \{\(b_{YPS}\), \(b_{YNS}\), \(b_{YPT}\), \(b_{YNT}\), \(b_{ONS}\), \(b_{OPS}\) and \(b_{OPT}\), \(b_{ONT}\)\} have the relation such as |\(b_{ONS}\)| and |\(b_{OPS}\)| is the same, and their sign is opposite.

Hence, the task for parameter tuning is to determine four parameters \{\(b_{YPS}\), \(b_{YPT}\), \(b_{ONS}\), \(b_{OPT}\)\} and it is thought to be a comparably easy task.

As a concrete example, let us consider the case of slide movement. Operator intends to move OMW towards right. Then, moment \(\omega\) was 0.3 when operator wished OMW to move towards right.

In this state, the region A is different from operator intention, because \(v_y\) and \(\omega_y\) are 0, as shown in (a) of Fig. 12.

Thus, the parameters \(b_{name}\) in Table 2, obtained by trial and error, must be changed. Then, \(b_{ONS}\) is changed from -0.3 to 0.3, and \(b_{OPS}\) from 0.3 to -0.3, due to the opposite sign. By this operation, the re-
region of slide is extended, and then it enables OMW to moves towards right even if $\omega = 0.3$, as shown in the left figure of Fig. 12 (b).

She uses the region of $\omega = 0$, when she wants OMW to conduct the slide motion. Then, the required movement was realized by tuning. Thus, the improvement of operation was achieved.

5 IMPROVEMENT OF COMFORT
BY USING A SECOND ORDER CONTROLLER

When the first order controller in previous section is used according to previous research, a big jerk (variation of acceleration) appears if the input force changes suddenly. Jerk is considered as the factor that dominates riding comfort. For riding comfort improvement, jerk must be decreased. A method for decreasing jerk is proposed as follows:

i) Decrease the gain K_i, ($i = x, y, \omega$).

ii) Increase the value of the time constant T_i, ($i = x, y, \omega$).

iii) Establish the largest restriction of jerk.

iv) Modify the controller.

In item (i), as the output velocity related to the help force becomes smaller, the jerk becomes small too. However, a big force is necessary for achieving the desired velocity. Then, the effect of power assist fades and OMW becomes, once again, very heavy for the attendant.

In items (ii) and (iii), jerk can be made smaller too, but in this case, after the change, the time for reaching the desired velocity increases. This generates a problem of deterioration of operability. In brief, with the proposed method is possible to improve riding comfort, but operability of OMW decays. Then, a second order controller

$$G_i(s) = \frac{V_i(s)}{F_i(s)} = \frac{K(\omega_n)^2}{s^2 + 2\zeta(\omega_n)s + (\omega_n)^2}, \quad (i = x, y, m)$$

is chosen as a power assist controller which can provide compatibility for both operability and riding comfort. Here, ζ is the attenuation factor. Even when the help force is fix, if overshoot O_s occurs, certain amount of time is required for the velocity to converge and operability deteriorates. Then, in order to avoid overshoot ζ_i is chosen as $\zeta_x = 1$, $\zeta_y = 1$, $\zeta_m = 1$.

In addition, for the resonant frequency ω_n, in the case when the time constant of the first order controller $T_x = 0.4$, $T_y = 0.4$ and $T_m = 0.4$, is used, it makes difficult for ω_n to be influenced by the noise included in the help force and as a consequence good operability of OMW is obtained. Then, in this case and in order for recovery time to become the same, ω_n is chosen, by trial and error, as $(\omega_n)_x = 4$, $(\omega_n)_y = 4$, $(\omega_n)_m = 4$.

However, ω^d will generate in the region A, when $\omega = 0.3$ is used. Then, OMW will simultaneously rotate with right slide.

In order to avoid this, b_{OPT} is changed from 0.3 to 0.9, and b_{ONT} from -0.3 to -0.9. Then, as seen from the right figure of Fig. 12 (c), ω^d doesn’t generate in the region A, and therefore OMW moves towards right slide without rotation.

Following this procedure, parameter tuning can be realized by easy manner. A monitor system has been developed such as the result of fuzzy reasoning like Fig. 12, and position and posture of OMW in the global coordinate, can be pictured in real time.

Figure 13 and Fig 14 show the experimental results after tuning for this person. Tuning was conducted such that right slide could be done under the conditions of $v_y > 0$ and $\omega \approx 0$. OMW was moved in the order:

Forward \Rightarrow Right slide \Rightarrow Left slide \Rightarrow 90^0 right turn \Rightarrow 90^0 left turn

Figure 13: Experimental results with fuzzy reasoning

Figure 14: Fuzzy reasoning after tuning

(a) Velocity of slide (b) Velocity of turn
Experimental comparison of the jerk produced in \(x \) direction by a first order controller and a second order controller, for the same reference velocity, was conducted. The experimental parameters were: \(K_x = 0.02C \), \(T_x = 0.4C \), \(\zeta_x = 1.0C \), \((\omega_n)_x = 4.0C \), sampling time \(t_s = 0.03[s] \). OMW was moved in automatic mode with an input help force given as:

\[
f_x = \begin{cases}
 0 & (0 \leq t < 1.4, t < 7, t \geq 10) \\
 50 & (1 \leq t < 4) \\
 -50 & (7 \leq t < 10)
\end{cases}
\]

Jerk was evaluated by differentiating the output of the encoders of OMW’s motors. Experimental results are shown in Fig. 15. \(v_x \) is the reference velocity, \(j_{x,omw} \) shows the actual jerk that was calculated by using the encoders output. As in order to calculate the jerk from the encoders output it is necessary to differentiate the encoders output, there is the problem that even a little noise present in the encoders output will cause big changes in the value of jerk due to differentiations. Here, instead of concentrating in very precise values of jerk, attention is given to the big variations of jerk, so using values of jerk for \((t-1)\) and \((t+1)\), where \(t \) is the actual time, a moving average of jerk is calculated. As the velocity is constant between \(t=3'[s] \), the jerk observed in this interval of time is due to the erratic reading of encoders and then is ignored. Attention will be focused on the interval of time between \(t=1'[s] \), in which there is acceleration and deceleration. It has been verified that a second order controller can achieve a maximum reduction of 20\% of the value of jerk produced during this period. Moreover, comparing this results with the case in which the reference velocity is input to a first order controller, there is almost no delay of time response and then operability is not degraded. For these reasons, it is possible to conclude that in this case second order controller has a better performance than first order controller. In addition, as riding comfort is something that depends on the subjective judgement of the OMW’s occupant, riding comfort was evaluated by using Semantic Differential (SD) method.

OMW was made to move in automatic mode in \(x \) direction and \(y \) direction and a questionnaire consisting of 7 items related to driving comfort was presented to 10 different people. The mean value of the results obtained in each item are shown in Fig. 16 for \(x \) direction and Fig. 17 for \(y \) direction. Even when the difference for the results in \(x \) direction and \(y \) direction is not so big, it is possible to see that the values obtained by the second order controller are much better than that obtained by the first order controller. Then a second order controller will be used as power assist controller because it can improve riding comfort.

6 CONCLUSIONS

A power assist system for omni-directional transport wheelchairs considering both attendant’s manipulability and rider’s comfort was developed. The reference velocity of the omni-directional wheelchair was derived from attendant’s input force. Manipulability of rotation was improved greatly by using the fuzzy direction estimator.

In order to improve riding comfort, the first order controller has been changed by newly giving a second order controller which can improve the riding comfort for reducing the jerk. Comfort has been enhanced by using a second order controller.

ACKNOWLEDGMENTS

This work was partially supported by The 21st Century COE Program “Intelligent Human Sensing”
REFERENCES

