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Abstract: The Distributed Supervision Systems that have been used extensively for the last fifteen years in the 
process industry are now evolving towards higher level solutions based on better connections between 
applications and processes that assure that data flows from the process to manage boards. Knowledge 
sharing seems to be a key issue in integrating these heterogeneous systems. In this paper we present an 
ontology as a first step to achieving semantic interoperability. The ontology has been conceived within the 
context of a complex integration problem, in which heterogeneous toolboxes cooperate to deal with several 
supervision, fault detection and diagnostic tasks for chemical processes. Regarding the current trends in 
ontology research, our proposal is consistent with top-level ontologies, as these kinds of ontologies seem to 
overcome the ontology integration problem. We describe a preliminary version of the ontology. The 
conceptualisation of control variables, system behaviour, supervision tasks, models and system properties is 
given. All attributes and relationships between each concept has been deployed. The ontology has been 
developed using Protete2000. 

1 INTRODUCTION 

The Distributed Supervision Systems that havebeen 
used extensively for the last fifteen years in the 
process industry are now evolving towards higher 
level solutions based on better connections between 
applications and process that assure that data flows 
from process to manage boards. Current 
requirements of flexibility, traceability and quality 
mean that all agents (suppliers, factories, vendors, 
maintenance, etc.) that participate in the final 
product must communicate with each other 
continually. Figure 1 shows the basic architecture of 
a SCADA (Supervisory Control and Data 
Acquisition) software. It is clearly oriented towards 
guaranteeing the integration of the process 
(Instrumentation Communication Interface), 
operators (HMI), supervisors (SPC/SQC), manager 
and other enterprise resources (ERP). 

Advances in distributed and ubiquitous 
computing, networking and sensors provide new 
environments in which it is possible to integrate 
these supervision techniques (Murray et al, 2003). 
However, integrating supervision techniques 
presents the challenge of shifting from traditional 

supervision systems as processes with single 
controllers to supervision systems as collections of 
heterogeneous physical and information systems 
with complex inter-connections and interactions 
(Murray et al, 2003; MacFarlane and Bussmann, 
2000). 

Holonic Multiagent systems seem to be a 
promising paradigm for managing, modelling and 
supporting integration (MacFarlane and Bussmann, 
2000). They provide a common platform to facilitate 
the information flow among different heterogeneous 
systems in such a way that decision support systems 
can be improved. The burden of information access, 
extraction and interpretation in the different steps 
that constitute supervising a plant is automated and 
presented to the human operator in a holistic and 
more comprehensive way.  

However, using a Holonic Multiagent system 
first requires the current supervision systems to be 
encapsulated, and second it requires elaborating a 
common, shared vocabulary that provides semantic 
interoperability among the different systems. Our 
goal here is to develop an ontology that provides 
semantic interoperability. In particular, we focus on 
integrating heterogeneous tools for supervision, 
fault detection and diagnosis (SFDD) within the 
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context of the CHEM European project (Cauvin, 
2002).  

This paper is organized as follows: First, in 
section 2 we explain what holonic multi-agent 
systems are and in section 3 we make some ontology 
definitions. In section 4, we provide the details of 
the SFDD ontology. In section 5 we explain how 
this ontology can be used to integrate heterogeneous 
toolboxes and we end with some conclusions in 
section 6. 

2 HOLONIC MULTI-AGENT 
SYSTEMS 

Holonic Multi-Agent research concerns two main 
communities: holonic manufacturing systems and 
agent technology. On one hand, a holon is “an 
autonomous and co-operative building block of a 
manufacturing system for transforming, 
transporting, storing physical and information 
objects” (MacFarlane and Bussmann, 2000). It 
consists in a control part and an optional physical 
processing part. A holon can be made up of other 
holons (MacFarlane and Bussmann, 2000; Giret and 
Botti, 2004). This concept of holons is clearly an 
extension of the current SCADA systems (See 
figure 1) with improved communication and 
processing capabilities clearly oriented towards 
decision making.  

On the other hand, agents provide autonomy with 
respect to the system capacity for a given 
environment (Wooldridge, 2002). Agent 
Technology, although broadly extended in open 
applications such as Internet services, has only 
recently been introduced to the supervision field 
(see (Bussmann and Schild, 2001) for an example). 

Although both approaches, holons and agents, 
share many basic concepts, research into each area 
has mainly been developed independently: research 
into holonic systems has focused on manufacturing 
systems, and research into Agent Technology has 
focussed on developing interconnected systems in 
which data, control, expertise or resources are 
distributed. Being aware of the common interest, 
there have been recent efforts to understand whether 
holons and agents are different or not and to join 
both communities (Marik et al., 2003)). This has 
lead to the term Holonic Multiagent Systems being 
formed, a novel paradigm for managing, modelling 
and supporting complex systems. This new 
paradigm provides two main benefits. On one hand, 
holons provide soundness and robustness, typical 

characteristics of the system engineering 
developments. On the other hand, agents facilitate 
the integration of heterogeneous systems.  

Our work is in line with this new approach for 
integrating heterogeneous supervision, fault 
detection and diagnosis systems. More than building 
new SFDD techniques, we focus on integrating 
them. As a first step, we have participated in 
developing toolboxes that encapsulate and describe 
SFDD techniques. Currently, we are dealing with 
the problem of making interconnecting toolboxes 
operational. In this challenge, one of the main 
drawbacks consists in information sharing, and 
therefore, ontologies play an essential role.  
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Figure 1: Basic structure of a SCADA system (from 
(Issermann and Ballé, 1997)) 

3 ONTOLOGIES 

In the past research into ontologies was rather 
confined to the philosophical sphere. Currently it is 
widespread in research fields as diverse as 
knowledge representation, knowledge engineering, 
qualitative modelling, database design, information 
systems and database integration, natural language 
understanding, information retrieval and extraction, 
object-oriented software development, knowledge 
management and organization, and agent-based 
system development (Giunchiglia et al., 2003). 
Several standardization organisms such as ISO, 
IEEE, and W3C are now working on this new 
technological challenge to integrate systems by 
means of a common vocabulary.  

Ontologies can be seen as metadata that explicitly 
represent semantics of data in a machine processable 
way (Giunchiglia et al., 2003). By making the link 
between the information’s form and content explicit, 
ontologies help people and computers to access the 
information they need. Moreover, ontologies are 
now recognized as powerful tools that enable 
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sharing knowledge, and a growing number of 
applications have benefited from using ontologies as 
a means of achieving semantic interoperability 
among heterogeneous, distributed agent systems 
(Sure and Corcho, 2003). They therefore have a 
crucial role in integrating supervision techniques. 

An ontology defines a common vocabulary for 
researchers who need to share information in a 
domain.    A domain ontology corresponds to an 
organized set of domain generic terms that can be 
used to describe a particular domain by providing 
machine-interpretable definitions of basic concepts 
in the domain and the relationships between them 
(Noy and McGuinness, 2001). An ontology of a 
specific domain is useful in two aspects: first, to 
make understanding the process in a specific domain 
easier; and second, to obtain a standard 
representation that can be shared and reused in other 
tools. With the second point it is important to 
highlight that different tools have been developed by 
several designers and there is no common 
vocabulary, so ontologies seem to be an appropriate 
mechanism for integration.  

Recent research work, however, has 
experimentally proved that ontologies are not 
enough to guarantee semantic interoperability. In 
(Correa et al., 2002) four main problems have been 
detected: 1) reusing ontologies to engineer new 
ontologies is not straightforward; 2) ontologies do 
not provide adequate information when sharing 
inferences; 3) when reasoning under uncertainty, 
additional semantic links regarding inference are 
required, and 4) in a large scale system, sharing 
group knowledge should be appropriately studied.  

Regarding the first problem, Guarino observes 
that ontologies developed from a bottom-up 
approach based on multiple local ontologies, may 
not work because they focus on conceptual relations 
in a specific context (Guarino, 1998). Therefore, 
there is no guarantee that two systems with the same 
vocabulary have the same conceptualisation. This is 
what he calls the ontology integration problem.  

In order to deal with this problem, several 
authors argue in favour of mapping mechanisms 
between ontologies (Schorlemmer and Kalfoglou, 
2003), while others, such as (Guarino, 1998), 
propose using different kinds of ontologies. Guarino 
distinguishes between top-level, domain, task and 
application ontologies, as shown in figure 2. Top-
level ontologies provide constraints and building 
blocks for representing knowledge (Martin and 
Eklund, 1999). Domain level ontologies describe the 
vocabulary related to a generic domain. Task 

ontologies are related to generic tasks or activities. 
Finally, application ontologies describe concepts 
depending on a particular domain and task. 

In this paper we propose a top-level ontology for 
distributed supervision systems (supervision, fault 
detection and diagnosis). Other works are related to 
supervision but at the application level. In (Bernaras 
et al., 1996), the authors present an ontology for 
fault diagnosis in electrical networks. In (Kitamura 
and Mizoguchi, 1999) the authors provide an 
ontological analysis at the task level regarding fault 
processes. Another interesting work on ontologies is 
in WEDSS, used to integrate rule-based systems, 
case-based reasoning and classical control 
techniques for wastewater management (Ceccaroni 
et al., 2004).  

 

Top-level ontology 

Domain ontology Task ontology 

Application ontology 

 
Figure 2: Kinds of ontologies according to (Guarino, 
1998) 

4 SFDD ONTOLOGY 

In order to elaborate an ontology for SFDD tasks, 
we have used the terms proposed in (Isermann and 
Ballé, 1997) and (Colomer and Meléndez, 2000) for 
supervision, fault detection and diagnosis.  
Therefore, the main terms are organized in variables, 
system behaviours, supervisory tasks, models and 
system properties (see Figure 3). Each term is 
defined in properties and relations, generating a 
complex network of classes, subclasses, instances 
and slots. (See figure 4 for a detailed description of 
the terms). In the following section we describe all 
the terms. 

Regarding the linking between ontologies and the 
conceptual modelling of the overall system, our 
ontology is a top-level one as stated above. So, first 
the particular instantiation of models, system 
variables and system behaviours will lead to a 
domain ontology for a given modellization. Second,  
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Figure 3:  General diagram of the ontology 

 
the refinement of supervisory tasks will provide a 
task ontology. And finally, the enhancement of 
system properties will derive in an application 
ontology. 

4.1 Variables 

The following variables have been considered for 
SFDD purposes and characterised as follows:  
• Signals are defined as physical measures or 

perceptible variables that communicate 
information and messages. Attributes: Units, 
Range, Typology (quantitative/qualitative, 
continuous/sampled/discrete events).   

• Fault: Unpermitted deviation of at least one 
characteristic property or parameter of the 
system in acceptable / usual / standard 
conditions.  It is composed of the following 
attributes: cause, duration, final_time, 
typology_of_fault (intermittent/permanent, 
evolutive/abrupt, additive/parametric), 
location_fault, Descriptor_fault, Size_fault, 
starting_time. 

• Error: Deviation between a computed variable 
(typically and output or state variable) and the 
true, specified or theoretically correct value.  It 
has the following attributes: two inputs (to 
compute it): correct_value, duration, final_time, 
measured_computed_value, result, 
starting_time 

• Disturbance: An unknown (and uncontrolled) 
input acting on a system.  The attributes of this 
subclass are:  typology (additive /multiplicative, 
etc), shape, duration final_time, input_point (if 
known, related 
with the physical system and/or the structural 
model), effects and starting_time. 

• Perturbation: An input acting on a system which 
results in a temporary departure from the 
current state.  The attributes are: 
idem_disturbance. 

• Residual: Fault indicator, based on deviations 
between measurements and model-equation-
based computations. Particular case of error. It 
has the following attributes: deviation, duration, 
final_time, result (fault detection decides about 
the presence or absence of faults), starting_time, 
decision_mechanism, Signature. 

• Symptom: An observable quantity changes its 
normal behaviour.  The attributes of this 
subclass are:  referred_quantity, duration, 
final_time, starting_time, shape (trends) and 
values. 

4.2 System Behaviour 

System behaviour is an overall description of the 
system operating conditions. Basic states can be 
defined:   
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• Normal Operating: the system behaves 
according to the specifications. 

• Faulty or Malfunction: Intermittent irregularity 
in fulfilling a system’s function.  It has the 
following attributes:  periodicity, starting time, 
final_time, faults (see fault attributes). 

• False alarm: The system is operating properly 
but the supervisory system has detected some 
misbehaviour. 

Fault_diagnosis 
Description_process Instance Models 
Time_detection Float 
Diagnostic_location_fault String 
Diagnostic_size_fault String 
Fault_diagnostic Instance Malfunction
Diagnostic_typology_fault String 

 
Figure 4: Description of the fault diagnosis attribute 

4.3 Supervisory Tasks 

The tasks are the different kinds of operations that 
must be performed in order to supervise a given 
system.  There are seven main kinds of tasks:  
• Fault detection: Detection of faults in a system 

and the detection time of a fault.  This subclass 
is composed of the following attributes: 
fault_presented (yes /no, without specifying 
additional information) and time_detection. 

• Fault isolation: Identification of the relevant 
attributes of the faults present: kind, location 
and detection time of a fault. This task follows 
fault detection.  The attributes of this subclass 
are: fault_presented and time_detection (input 
attributes given by the fault detector), fault 
attributes (kind_fault, location_fault, 
fault_time) are presented as the conclusion of 
this task. This task needs information from 
specific models of the system (structural model, 
diagnosis model) in order to perform the task. 

• Fault identification: Detection of other relevant 
attributes of faults:  the size and time-variant 
behaviour of a fault. This task follows fault 
isolation.  It has the following attributes: fault 
attributes (size_fault and 
timevariant_behaviour). 

• Fault diagnosis: Detection of kind, size, location 
and the detection time of a fault. This task 
follows fault detection. Fault group isolation 
and identification.  The attributes of this 
subclass are: time_detection, fault_presented 
and diagnostic (kind_fault, location_fault, 
size_fault and time_detection). It needs 

structural and/or diagnosis models to perform 
the task. 

• Monitoring: A continuous real time task to 
determine the conditions of a physical system, 
by recording information and recognizing and 
indicating anomalies of the behaviour. The 
attributes are: monitored_variables, alarms, 
events, operating_conditions, 
tunning_parameters (thresholds and similars), 
anomalies_behaviour and 
information_recognising. 

• Supervision: Monitoring a physical system and 
taking appropriate actions to keep the system 
operating in the case of faults.  It has the 
following attributes: diagnostic, actions, 
decision_system. 

4.4 Models 

For the purpose of engineering analysis and design, 
physical systems are usually represented in some 
mathematical form; this representation is also called 
the model of the system.  The properties of the 
model reflect the nature of the system, though in 
many cases the model may just be an approximation 
of the true system behaviour.  In (Isermann and 
Ballé, 1997), five classes of models are considered 
(See figure 5): 
• Quantitative model: Uses static and dynamic 

relations between system variables and 
parameters in order to describe system 
behaviour in quantitative mathematical terms.  
The attributes of this subclass are: description, 
input_quantitative, output_quantitative and 
parameters. 

• Qualitative model: Uses static and dynamic 
relations between system variables and 
parameters in order to describe system 
behaviour in qualitative terms such as 
causalities or if-then rules. It has the following 
attributes:  description, input_qualitative, 
output_qualitative and parameters. 

• Diagnostic model: A set of static or dynamic 
relations which link specific input variables (the 
symptoms) to specific output variables (the 
faults).  The attributes of this subclass are: 
description, input_diagnostic (symptoms, 
residuals, and physical variables), 
output_diagnostic (fault attributes) and 
parameters. 
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Figure 5: Ontology particular diagram 
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• Heuristic_model: The attributes of this subclass 
are:  description, input_heuristic and 
output_heuristic. Commonly used for making 
diagnoses, working with symptoms and 
attributes of the diagnostic model.  

• Structural model: Definition of the physical 
interaction between components, materials and 
energy sources. Attributes: description, 
components, (sub)systems, instruments, plants, 
materials. 

In a future, we will add a sixth class regarding 
event-driven models.  

4.5 System Properties 

System properties relate particular characteristics 
required for the system. The main properties are: 
reliability, safety, availability, dependability.  
• Reliability: Ability of a system to perform a 

required function under stated conditions, 
within a given scope, during a given period of 
time. Measure: MTBF = Mean Time Between 
Failure. MTBF = 1\la; la is rate of failure (e.g. 
failures per year).  It has the following 
attributes:  MTBF, period_time and 
required_function. 

• Safety: Ability of a system not to put people, 
equipment or the environment into danger.  It 
has the following attributes:  value_safety. 

• Availability: Probability that a system or the 
equipment will operate satisfactorily and 
effectively at any point of time measure: MTTR 
Mean Time To Repair MTTR = 1/µ; µ: rate of 
repair.  The attributes of this class are:  MTTR 
and probability_availability. 

• Dependability: A form of availability that has 
the property of always being available when 
required. It is the degree to which an item is 
operable and capable of performing its required 
function at anyrandomly chosen time during its 
specified operating time, provided that the item 
is available at the start of that period (RAM 
Dictionary).  It has the following attributes:  
degree_dependability and time_dependability. 

5 ONTOLOGY FOR SFDD  

The ontology described in the previous section has 
been created using the tool Protegé 2000 (Noy et al., 
2003) with the purpose of integrating different 
supervision, fault detection and diagnosis toolboxes, 

within the context of the CHEM project (Cauvin, 
2002). These toolboxes are the result of 
encapsulating  SFDD techniques which provide a 
common description and interface for users. Each 
toolbox has been designed and developed by 
different teams. The SFDD ontology provides a 
shared and common vocabulary for the toolboxes 
with two main benefits: Firstly, the operator handles 
decision support information holistically. Secondly, 
the operator is not burdened with different 
vocabularies and interpretations coming from 
heterogeneous tools, but can work with a single 
ontology.  Figure 6 shows the differences between 
the current SFDD information flow and the 
integration approach using an ontology.  

6 CONCLUSIONS 

In this paper we present a top-level ontology for 
sharing knowledge in distributed supervision 
systems. We provide the basic conceptualisation and 
implementation with Protege2000. The ontology is 
presented as a first step towards SFDD toolbox 
interoperability.  

We have two main lines of research for future 
work. First, to study pruning and factoring 
mechanisms, like in (Conesa et al, 2003), in order to 
derive both task and domain level ontologies from 
our top-level ontology. Second, to effectively 
integrate SFDD toolboxes into a multi-agent 
platform (Wooldridge, 2002) by means of the 
ontology. 

 

 
Figure 6: Above: current data flow of heterogeneous 
SFDD tools. Below:  Data flow of supervision, fault 
detection and diagnosis integration 
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