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Abstract: The paper proposes a novel method for extremely fast inverse kinematics computation suitable for 
animation of anthropomorphic limbs, and fast moving lightweight manipulators.  In the information 
intensive preprocessing phase, the workspace of the robot is decomposed into small cells, and joint angle 
vectors (configurations) and end-effector position/ orientation (posture)  data sets are generated randomly in 
each cell using the forward kinematics.  Due to the existence of multiple solutions for a desired posture, the 
generated configurations form clusters in the joint space which are classified.  After the classification, the 
data belonging to each solution is used to determine the parameters of simple polynomial or neural network 
models that closely approximates the inverse kinematics within a cell.  These parameters are stored in a 
lookup file.  During the online phase, given the desired posture, the index of the appropriate cell is found, 
the model parameters are retrieved, and the joint angles are computed.  The advantages of the proposed 
method over the existing approaches are discussed in the paper.  In particular, the method is complete 
(provides all solutions), and is extremely fast.  Statistical analyses for an industrial manipulator and an 
anthropomorphic arm are provided using both polynomial and neural network inverse kinematics models, 
which demonstrate the performance of the proposed method. 

1 INTRODUCTION 

One of the most fundamental and ever present 
problems in computer animation and robotics is the 
inverse kinematics (IK). This problem maybe posed 
as follows: Given a desired posture vector u 
representing the hand (end-effector) position and 
orientation, and the forward kinematics equation 

)(fu θ=  , find the set of all joint angle vectors 
(configurations) θ  of the animation character or 
manipulator that satisfy the forward kinematics 
equation.  The IK mapping is in general one to 
many, involves complex inverse trigonometric 
functions, and for most manipulators and animation 
figures no closed form solution exists. In addition, in 
computer animation, as well as in real-time 
manipulator applications, extremely fast IK 
computation is required.  

The IK problem has attracted immense attention 
and numerous solutions have been proposed, 
including algebraic, Jacobian-based and 
neural/genetic algorithms.  In the algebraic based 
approaches, a system of nonlinear polynomial 
equations in the elements of θ  is solved either 

symbolically or numerically using various methods 
(Uicker 1984, Manchoa 1994, Zhao 1994, Tolani 
2000).  Algebraic methods are generally 
computationally intensive and are not suitable for 
applications such as animation that require 
extremely fast solutions. 

 Jacobian based approaches (e.g. Whitney 1972, 
Press 1988),  formulate problem at the velocity 
level, i.e. )t()(J)t(u θθ=  where J(q) is the 
Jacobian matrix of the manipulator. The equation is 
solved for the joint rate vector )t(θ , which is then 
integrated to obtain θ . When the manipulator is 
redundant, the Jacobian matrix becomes non-square, 
and several approaches such as Jacobian pseudo-
inverse and Jacobian augmentation have been 
proposed to resolve the redundancy (e.g. Klein 
1983, Seraji 1993). One of the main difficulties with 
the Jacobian based approaches is the singularity 
problem where J(q) becomes rank deficient, which 
can cause joint velocities (and acceleration/jerk) to 
become unacceptably large.  To ameliorate the 
singularity problem, a number of methods have been 
proposed (e.g. Chiacchio 1991, Chiaverini 1994, 
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Lloyd 2001), each requiring special considerations 
to deal with singularities with the associated 
computation overhead.  More importantly, they are 
not complete in the sense that they do not provide all 
solutions  (configurations) for a given posture. 

More recently, neural networks and genetic 
algorithms have been used for solving the inverse 
kinematics problem (e.g. Dermata 1996, Nearchou 
1998, Khwaja 1998, Chapelle 2001, De Lope 2003). 
Neural network and genetic algorithm methods are 
not complete and therefore generally find a 
particular solution rather than all solutions. Neural 
networks face problems for approximating multi-
valued functions. Genetic algorithms do not 
guarantee the convergence to a desired solution, but 
their major difficulty is that they require many 
generations (iterations) to arrive at an approximate 
solution and therefore are not suitable for real-time 
applications. 

The purpose of this paper is to propose a novel 
approach for ultra fast IK solutions with few 
limitations for 6-DOF manipulators, and 7-DOF 
anthropomorphic limbs used in animation.  Fast IK 
techniques are needed for multiple limb animation 
characters such as a human figure for variety of 
applications such as motion capture. The IK 
problem is solved in two phases, an off-line 
information-based  preprocessing phase and an on-
line rapid evaluation phase.  Preprocessing consists 
of spatial decomposition, classification, optimal data 
generation and simple polynomial curve fitting, or 
neural network approximation.  This off-line 
preprocessing phase is performed only once for a 
limb or a manipulator, and can be used an infinite 
number of times during on-line IK computation.  
Because of the preprocessing, the on-line phase, 
which finds various configurations for a desired 
posture, is extremely fast.  

2 SPATIAL DECOMPOSITION 

In this section we discuss the forward kinematics 
and spatial decomposition for 7-DOF limbs and 
manipulators.  All the developments of this and 
subsequent section will naturally be valid for the 
cases with fewer 7-DOF, as will be demonstrated in 
Section 5.  

A human-like figure, often used in animation 
and graphics, consists of a number of limbs i.e. arms 
and legs. An arm (leg) is generally modeled as a 7 
DOF chain consisting of the shoulder (hip) and the 
wrist (ankle) each as a 3 DOF spherical joint, and 
the elbow (knee) as a single DOF revolute joint 

(Tolani 2000).  The human-like figure is often 
decomposed into limbs with the torso as the 
common or reference coordinate.  In motion capture 
applications, position and orientation of the shoulder 
(hip) and hand (foot) of a live subject are measured 
using sensors attached to the body.  The position and 
orientation are then used in conjunction with inverse 
kinematics to find the joint angles of the limbs in 
order to drive animation characters. It is also noted 
that most redundant robot manipulators used in 
applications or in research are also 7 DOF (Seraji 
1993).  Examples of these manipulators are the 
space station RMS and K1207 manufactured by 
Robotics Research arm.   The latter has a joint and 
links arrangements similar to limb, but it also has 
offset at joints. 

Consider the forward kinematics equation of a 
limb 
 

  )(fu θ=      (1) 
 
where θ  is the 17×  vector of joint angles that define 
the limb configuration, and u is the 16×  vector of 
the limb posture which defines the hand position 
(e.g. x, y, z) and orientation (e.g. Euler angles 

γβα ,, ).  We refer to the 7-dimensional space 
whose the coordinates are the joint angles as the 
configuration space and to the 6-dimensional space 
whose coordinates are position and orientation as the 
posture space.  Because the dimension of the 
configuration space is more than that of posture 
space, the anthropomorphic limb has redundancy. 
 In order to encode and exploit the redundancy, 
we parameterize the solution space using a single 
variable v. This variable is specified on-line to 
explore different solutions and choose the one best 
suited for the application on hand.  Elbow 
inclination in a 7-DOF anthropomorphic limb or in 
the K1207 manipulator is an example of such a 
variable.  The elbow inclination is defined as the 
angle of the rotation, about the shoulder-wrist line, 
of the plane containing origins of shoulder, elbow 
and wrist.  The elbow inclination, referred to as 
swivel angle in (Tolani 2000) and as arm angle in 
(Seraji 1993), has been used to constrain a selected 
point on the limb, to perform aiming of the end-
effector towards a target point, to keep the figure 
balanced, etc. (Tolani 2000)  

The elbow inclination v can be written as 
 
  )(gv θ=            (2)  
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where )(g θ  is a kinematics function that relates the 
joint angles to the elbow inclination mentioned.  In 
the limb, v is in fact a function of only the first four 
joint angles. We now augment kinematics equation 
(1) with the variable constraint equation (2) to 
obtain 
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        or   )(hw θ=   (3) 

 
The new posture is now the 17 ×  vector 

T)vu(w = , the forward kinematics function is 
T))(g)(f()(h θθθ = and (3) represents the 

kinematics of a non-redundant limb.  The result of 
the kinematics constraint is an increase in the 
dimension of the posture space from 6 to 7.    

We now decompose the posture space into 
small cells so that the IK can be approximated by 
very simple expression in each cell.  These 7-
dimensional cells have their axes representing 
positions z,y,x , orientation angles γβα ,,  (using a 
suitable convention such as Euler angles), and v (e.g. 
elbow inclination).  The cell side lengths are 
obtained by dividing the maximum ranges of each 
quantity, γβα ,,,v,z,y,x  into a number of 
divisions γN,,N,N yx .   Any valid limb posture 
will be in one of the cells defined above.  Higher 
values of γN,,N,N yx correspond to smaller size 
(volume) cells and result in more cells, adding to the 
off-line computation effort.  However, smaller cell 
sizes will require simpler mathematical models for 
representing the cell inverse kinematics. These 
simpler models in turn speed up the on-line 
computation effort.   
 Once the posture space is decomposed into the 
cells, we must generate data points for each cell. The 
data consists of sets of configuration vectors θ  and 
their associated postures vectors w. A large number 
of configurations are generated by assigning random 
values in the range of joints angles, and (3) is used 
to determine their respective posture w. Each 
generated posture is placed into its appropriate cell, 
and when the number of postures in a cell reaches a 
predetermined value pN , the next generated 
posture that falls into that cell is discarded.  The 
generation continues until a certain percentage of the 
cells have pN  postures.  It is noted that many cells 
may be outside the workspace in which case they 
will not contain any postures, and some cells are on 

the boundary or partially in the workspace in which 
case they will contain fewer than pN postures.  

3 CLASSIFICATION 

The generated cell configuration-posture data set 
}w,{θ  cannot be used for modelling without further 

processing.  First, it is noted that there can be a 
number of configurations (solutions) for a given 
posture. The anthropomorphic limb has a spherical 3 
DOF shoulder joint ( 321 ,, θθθ ) which together with 
the a single DOF elbow joint ( 4θ ) can achieve a 
desired wrist position/elbow inclination (sub-
posture) with a maximum of four sets of  joint 
angles (sub-configurations), namely,  
( 4321 ,,, θθθθ ), ( 4321 ,,, θπθθθ + ), 
( 4321 θθπθπθ ,,, −−+ ) and 
( 4321 θπθπθπθ ,,, +−−+ ).  It is noted that only 
the first three angles are responsible for providing 
different solution.  In addition, the wrist is also a 
spherical joint, and a desired hand orientation can be 
achieved with two sets of wrist joint angles 

765 ,, θθθ .  Thus the maximum number of solutions 
(configurations) for a desired posture is eight.  The 
kinematics of the limb is such that the hand position 
and elbow inclination v,z,y,x are dependent only 
on the first four joint angles 41 θθ ,, .  The wrist 
angles 765 θθθ ,,  are dependent both on these four 
joints and the desired orientation γβα ,, .  
 Before cell IK modelling, configuration-posture 
data belonging to a solution must be separated from 
those of the other solutions within a cell. In (Tarokh 
2005), we have developed a fuzzy classification 
method to classify the solutions.  

4 INVERSE KINEMATICS 
MODELING  

The purpose of this step in the preprocessing phase 
is to develop a simple model for the IK, and to 
determine its parameters for each solution within 
each cell.  The simplicity or complexity of the 
required model depends on the size of the cell.  
Smaller size cells will require simpler models to 
accurately represent postures in them, but the 
number of cells will be higher since the posture 
space volume is constant. The opposite is true for 
larger cell sizes, which require more complex 
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models. For animation, high position/orientation 
accuracy is not essential, but very short online 
computation time is needed, and therefore a simple 
model is preferred.  We consider two models, 
namely  polynomial and neural network models as 
follows:  

4.1 Polynomial  Model  

The simplest polynomial model representing the 
relationship between the first four joint angles and 
position/inclination belonging to a particular 
solution in a cell is the linear equation 
 

T
i i ia ( x y z v ) i 1,2, ,4θ σ= + =  (4) 

 
where ia  is a 41×  constant parameter vector and 

iσ  is a constant scalar parameter. These parameters 
are determined via a least squares (regression) 
method for each cell using the cell data set.  Note 
that the same accuracy of the inverse kinematics 
solution can be obtained by reducing the number of 
cells but increasing the order of the model which in 
turn increases the number of model parameters and 
online computation time. 
The model parameters are stored as records in a file 
for the subsequent online retrieval. Each record has a 
unique address in the file where the parameters of a 
cell inverse kinematics model are stored.  Suppose 
there are D divisions for each of the axes v,z,y,x . 

Then there will be 4
cellD D=  cells, and the file 

address is encoded as 
 

3 2
adrs 4 3 2 1F k D k D k D k= + + +    (5) 

 
where 14 k,,k  are integers between 0 and D 1− , 
and  represent the cell indices for v,z,y,x . At each 
address representing a cell, there is a solution 
number, followed by the values of model parameters 
( ii ,a σ ) for the particular cell and solution.   
  During the online phase, given the desired sub-
posture (e.g. dddd v,z,y,x ), the cell indices 

134 k,,k,k are computed as follows.  Suppose the 
range of a posture variable, say v, is  minv  to maxv , 
and the cell size length is slv , then the index 1k  is 
computed as  
 

d min
1

sl

v v
k ceil

v
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

        (6) 

 
where ceil denotes the ceiling of the quantity. Other 
cell indices 4 3 2k ,k ,k for x, y,z are computed 
similarly and the address in the file is determined via 
(5). 
 Since the data is stored in the file with 
increasing order of the address, a binary search is 
conducted to locate and access the cell data.  The 
binary search performs )N(log cell2  comparisons in 
the worst case.  Once the parameters for each 
solution are retrieved, the joint angle values are 
computed via (4).  
 The wrist joint angles 765 θθθ ,,  are modeled 
similarly to achieve the desired orientation.  
However, these joints angle are dependent both on 
the first four joints and the desired orientation.  In 
addition the wrist joint angles have a more complex 
relationship with the orientation. As a result we 
express the wrist angles as a linear relation with the 
first four joint angles and a quadratic relation with 
the orientation angles of the form   
 

T T
i i 1 2 3 4 i

T 2 2 2
i i i

b ( ) c ( )

d ( ) e ( )
i 5,6 ,7

θ θ θ θ θ α β γ

αβ αγ βγ α β γ σ

= +

+ + +

=

 (7)                                     

    
   
where ib  is a 41×  parameter vector, ic , id and ie  
are   31×  parameter vectors and iσ  is a scalar 
parameter.  These parameters are obtained using a 
least squares method, and are stored as records 
similar to the procedure given above for the first 
four joint angles.  The cells for the orientation will  
be 7-dimensional, and (5) will be a 6-th order 
polynomial. The on-line procedure is also identical 
to those of first four joint angles. Since no 
trigonometric or inverse trigonometric functions are 
involved, the computation is extremely fast.  

4.2 Neural Network Model 

It is well known that backpropagation neural 
networks can be used for approximation.  In this 
section we describe a simple neural network model 
to approximate the inverse kinematics relationship.  
 For the position kinematics, the neural network 
consists of an input layer with a 4 N×  weight 
matrix inW , where 4 is the number of inputs 
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v,z,y,x ,  N is number of neurons in the hidden 
layer, and the output layer has 4 outputs representing 

4321 ,,, θθθθ .   The inputs v,z,y,x are first 
normalized as  
 

min

max min

2( x x )
x 1

( x x )
−

= −
−

       (8) 

 
where minx and maxx are, respectively the minimum 
and maximum values of the x data in the cell.   
Similarly y,z,v are normalized so that their ranges 
are between –1  and +1.  The output of the input 
layer p is thus 
 
  in inˆ ˆ ˆˆp ( x y z v ) W b= +      (9) 
 
where inb  is a  constant 1 N× bias vector.  A 
tangent sigmoid function of the following form is 
applied to p to obtain 
 

j
j 2 p

2q 1; j 1,2,...N
1 e−

= − =
+

  (10) 

 
Finally, the normalized joint angle vector is obtained 
from  
 

1 2 3 4 out out
ˆ ˆ ˆ ˆ( ) q W bθ θ θ θ = +     (11) 

 
where q is an 1 N× vector outW is an N 4×  matrix 
and outb  is a 1 4× output bias.  The actual 
(denormalized) joint angles are obtained from  

i i ,max i,min i i ,min
1 ˆ( )( 1)
2

θ θ θ θ θ= − + +  (12) 

 
where i ,max i,min,θ θ are the minimum and maximum 
values of iθ in the cell.  The neural network is then 
trained with the cell data points to obtain weight 
matrices and bias vectors.  
The data to be stored for the on-line phase are the 
weight matrices inW and outW , bias vectors inb  and 

outb and minimum and maximum of 
v,z,y,x , 1 2 3 4, , ,θ θ θ θ  for each cell.  During the on-

line phase, given the desired values of v,z,y,x , 
these values are normalized via (8), passed through 
the input, hidden and output layers by applying (9)-
(11).  The actual (denormalized) joints values are 
finally found from (12). 

Orientation kinematics is obtained similarly to 
the above, except that the inputs to the network 
are 1 2 3 4, , ,θ θ θ θ obtained above and the orientation 
angles γβα ,, .  The outputs of the network are the 
joint angles 5 6 7, ,θ θ θ . The input and output 
weight matrices inW  and outW  are now 7 N× and 
N 3× , and the bias vectors inb  and outb are 
1 N× and 1 3× , respectively.  

5 PERFORMANCE ANALYSIS 

In this section we apply the proposed method to the 
Puma 560 manipulator and the anthropomorphic 
arm. The reason for the choice of the Puma 560 is 
that it is a well known and extensively researched 
manipulator, and serves as a bench mark.  
Furthermore, it has a closed form inverse kinematics 
and thus the correctness and success rate of the 
proposed method can be checked against the known 
results of the Puma 560.  

5.1 IK Modeling of Puma 560 

The joint angles ranges of the Puma are given in 
Table 1. The first three joints, or the major joints, of 
the Puma 560 are waist, shoulder and elbow joints, 
and determine the position of the end-effector.  
Therefore, we can express the first three joints in 
terms of x, y and z only.  The fully stretched arm is 
about 900 mm long, and we assign ranges for each of 
x, y and z directions from  –900 mm to +900 mm, 
with the cell side length of 200 mm which forms 
cubes of volume 3100 100 100 mm× × .  There are a 

maximum of ( )31800
100 5832= cubes (cells), but only 

about 3400 of them contained generated postures 
due to the joint angle limits.  The maximum number 
of cells for the orientation kinematics with cells 
sizes of 20 degrees for 1 2 3, ,θ θ θ , and 45 degrees for 

γβα ,, for the ranges of these angles are 
17 14 17 8 8 8 2,071,552× × × × × = .  

We used the polynomial model (4) and (7).   
The number of joints for position is three and only x, 
y and z are present, thus ia , i=1,2,3 in (4)   are 

31× vectors.  

Table 1: Joint angle ranges (limits) for Puma 560 
1θ  2θ  3θ  4θ  5θ  6θ  

–170 
+170 

–225 
+45 

–250 
+75 

–135  
+135 

–100 
+100 

–180 
+180 
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 The Puma 560 has a maximum of four 
solutions, i.e. elbow up/down, left/right arm, for 
positioning of the end-effector, and eight solutions 
for position and orientation, which were found using 
the classification.  The parameters of the above 
models were found for each of the four solutions in 
each of the cells using a least squares method.  
These parameters were stored in a file for each cell, 
and the total storage needed was about 372 KB for 
position kinematics and 340 MB for the orientation 
kinematics. Note that memory and disks are very 
cheap (e.g. about $100 per 1 GB of memory and 
about $60 for a 100 GB disk),  and are readily 
available on a PC. 
  In order to test the validity of the models, we 
generated randomly 1000 position and orientation 
postures within the ranges of  x, y, z and γβα ,, .  
The polynomial model (4) and (7) were used to 
obtain the joint angles.  The results are summarized 
in Table 2a and Table 2b.  

Table 2a: Position kinematics – Polynomial model 
A B C D E 
1 908 99.3 2.92 2.37 
2 500 98.6 2.80 2.17 
3 518 98.6 2.83 2.36 
4 927 99.2 2.92 2.41 

A: Number of solutions 
B: Number of valid configurations  
C: Success rate (%) 
D: Mean absolute position error (mm) 
E: Error standard deviation (mm) 

Table 2b: Orientation kinematics – Polynomial model  
A B C D E 
1 340 97.3 2.10 2.92 
2 144 97.3 1.96 2.45 
3 276 96.2 1.83 2.15 
4 372 97.4 1.96 2.34 
5 385 98.2 2.22 2.73 
6 238 96.0 1.94 2.62 
7 196 97.1 1.95 2.88 
8 369 95.7 1.81 2.38 

A, B , C: as defined in Table 2a. 
D: Mean absolute orientation error (degrees) 
E: Error standard deviation  (degrees) 
 
 The success rate is defined as the ratio of the 
number of valid configurations found by the method 
to those found by the closed-form inverse kinematic 
equation.  It is seen that the success rates are high 
ranging from 89% to 100%. The error is defined as 
the difference between the desired and actual end-
effector position, and orientation.  The actual values 
are determined by substituting the joint angles found 
by the method in the forward kinematics equations.  
It is seen from Table 2 that the mean absolute 
position and orientation errors are about 1.8 mm, 
and 4.5 degrees, respectively. 

  Now consider the neural network model (8)-
(12) applied to the Puma 560, however the cell size 
for position was increased to 200 mm providing 
only 646 cells for position.  The size of orientation 
cells is the same as in the case of polynomial model. 
Several experiments were conducted to determine 
the number of neurons for accuracy, simplicity and 
success rate and it was found that  
N = 5 provided a compromise among these 
characteristics. The maximum amount of  memory 
needed for storing weight matrices, bias vectors and 
minimum and maximum values for normalization 
and denormalization were 573 KB for position and 
605 MB for orientation which are between 1.5 to 1.7 
times of those of the polynomial model.   
 The results are now summarized in Tables 3a 
and 3b.  It is seen that the success rates are very high 
ranging from 92% to 100%, which are higher than 
the polynomial model.  The position errors are about 
2.5 mm and the orientation errors are 2.9 degrees 
which are somewhat better than the polynomial 
model given in Table 2.  The online time, however, 
is two to three times more than the polynomial 
model.  This is due to the higher number of 
parameters and operations needed in the neural 
network model.  

Table 3a: Position kinematics – neural network model 
A B C D E 
1 880 91.6 1.74 1.31 
2 465 89.1 1.91 1.32 
3 451 91.1 1.92 1.42 
4 830 94.0 1.77 1.36 

 A,B,C,D,E : See definitions in Table 2a 

Table 3b: Orientation kinematics - neural network model 
A B C D E 
1 350 97.3 1.75 2.68 
2 160 97.3 2.67 2.54 
3 260 96.2 3.09 5.62 
4 813 97.4 2.33 3.71 
5 392 98.2 3.62 6.35 
6 205 96.0 2.27 2.94 
7 196 97.1 4.41 7.11 
8 368 95.7 1.48 1.89 

 A,B,C,D,E: See definitions in Table 2b. 
 
 The total on-line time T to compute different 
configurations for a desired posture consists of 
several components as follows: 
 

1T : Checking to verify that the desired point 

ddd z,y,x  is reachable.  

2T :  Computing the cell indices and the addresses 
  in the file for position and orientation. 

3T :  Applying a binary search to locate the address 
  in the file where model parameters for various 
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 solutions are stored, and retrieving these 
parameters.  

4T : Computing joint angles using (4) and (7) for 
polynomial model, and (8)-(12) for the neural 
network model.  

The total computation time is the sum of the above 
four time components. The online computation was 
done on a Pentium 4, 3.0 GHz computer with a C 
program.   Table 4 show the total online time for 
each model. Note that the time is in microseconds 
for computing all solutions (a maximum of eight) 
averaged for 1000 randomly generated postures.  
For the sake of comparison, the solutions were also 
computed using the closed-form inverse kinematics 
of the Puma 560.  These closed form equations were 
programmed in C with an optimized implementation 
to perform the least amount of computation.  The 
total time using the closed-form inverse kinematics 
computation was 24 microseconds, which is 10 
times slower than the proposed method with the 
polynomial model, and 4 times slower than the 
neural network model.  The contrast is much greater 
for robots that do not have closed-form solutions.  
Our analysis and simulations have shown that the 
proposed method can be two to three orders of 
magnitude faster than other techniques for 
manipulators without closed forms kinematics. 

Table 4: Total computation times in microsecond 
Polynomial 
Position 

Polynomial 
Orientation 

Neural Net 
Position 

Neural Net 
Orientation 

 
0.54 

 
1.58 

 
2.16 

 
4.66 

5.2 Modeling of Anthropomorphic 
Arm  

The procedures described above were applied to the 
anthropomorphic arm described before. The ranges 
of the spherical shoulder joints ( 321 θθθ ,, ), elbow 
( 4θ ) and the spherical wrist joints ( 765 θθθ ,, ) are 
given in Table 5. The upper arm length is 334 mm 
and lower arm length is 288 mm.  The length and 
joint limit data were obtained from a study 
conducted by NASA.   

Table 5: Joints ranges for the anthropomorphic arm 
1θ  2θ  3θ  4θ  5θ  6θ  7θ  

–39 
164 

–61 
187 

–83 
210 

0 
149 

–40 
61 

–59 
78 

–78 
94 

 
 The fully stretched arm is about 600 mm long, 
and we assign ranges for each of x, y and z from  –
600 mm to +600 mm, with the cell side length of 60 
mm.  The range of inclination angle is –100 degrees 

to +40 degrees with the cell size of 10 degrees.  
With these ranges, the maximum number of cells is 
129,654. 
 The polynomial model (4) for the position 
requires a maximum storage of 14.9 MB if all cells 
contain data and each cell has the maximum of four 
solutions.  An experiment involving 1000 randomly 
chosen values of  ( v,z,y,x ) was carried out and the 
values of  ( 4321 θθθθ ,,, ) were found using the 
acquired IK model parameters.  These values were 
then substituted in the forward kinematics to 
determine the accuracy of the solution.  Table 6a 
shows the number of cells containing 1, 2, 3 or 4 
solutions, and the average and standard deviation 
position errors for each solution. These errors are 
quite acceptable for animation applications. 
Furthermore since there is no closed form solution, 
the success rate cannot be estimated for the arm, but 
is believed to be similar to that of the Puma 560.  
Note also that the smaller number of valid solutions 
compared to the Puma 560 is due to the limited 
ranges of the anthropomorphic arm joint angles and 
specification of (restriction on) the elbow 
inclination. 

Table 6a: Position kinematics – Polynomial model 

A B C D 
1 481 1.97 1.32 
2 89 2.91 2.16 
3 61 2.45 2.09 
4 41 2.86 2.07 

A: Number of solutions 
B: Number of valid configurations  
C: Mean absolute position error (mm) 
D: Error standard deviation (mm) 

Table 6b: Orientation kinematics – Polynomial Model   
A B C D 
1 52 2.41 2.07 
2 12 3.66 2.90 
3 10 3.63 1.37 
4 3 2.00 1.38 
5 38 2.89 2.35 
6 9 3.07 2.99 
7 8 3.52 2.34 
8 6 3.11 1.13 

A, B: See Table 6a for definitions.  
C: Mean absolute orientation error (degrees) 
D: Error standard deviation (degrees) 
 
 To obtain the wrist angles 765 θθθ ,, , the 
ranges of γβαθθθθ ,,,,,, 4321 were divided into 
cells of side length 20 degrees for the joint angles, 
and 45 degrees for the orientation angles. The 
maximum number of cells is 8,785,920, but not all 
these cells contain data. The parameters of the IK 
model were obtained using (7) as described before.   
The actual storage for the data is about 1 GB. Note 
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that even though this arm is 7-DOF, the storage 
requirement is not much higher than that of the 6-
DOF Puma due to the fact that the ranges of the joint 
angles the arm are lower than Puma 560.  An 
analysis similar to the above was carried out 
involving randomly selected postures, and the 
results are shown in Table 6b.  The average and 
standard deviation errors in orientation are about 3 
degrees, which are quite acceptable for the 
animation applications.  Since closed form 
kinematics is not known for this arm, the success 
rate cannot be found, but the results of the 
experiments reported in Section 5.1 indicate that 
success rate of the proposed method is high. 
 We now report the results for the neural 
network model using (8)-(12), which are 
summarized in Table 7a and 7b. Comparison of 
tables 6 and 7 indicates that better position and 
orientation accuracy are obtained using the neural 
network.. However, the disadvantage of the neural 
network model is the need for much higher off-line 
time for training. 

Table 7a: Position kinematics – neural network model 
A B C D 
1 495 0.87 1.32 
2 103 1.66 2.16 
3 66 1.47 2.09 
4 47 1.48 2.07 

 A,B,C,D: See the definitions in Table 7a. 
 

Table 7b:  Orientation kinematics – Polynomial Model   
A B C D 
1 43 1.14 0.66 
2 10 1.50 1.82 
3 9 1.68 1.55 
4 1 0.44 0.0 
5 39 1.60 1.82 
6 9 2.46 3.07 
7 7 2.53 2.04 
8 5 3.81 2.82 

 A,B,C,D: see the definitions in Table 6b. 
 
 The online computation times for the two 
models are given in Table 8.  These times measured 
in microsecond are for computing all solutions (i.e. a 
maximum of 8) averaged over all the randomly 
chosen postures. The online computation time is 
extremely low which enables real-time computation 
for animation applications involving many limbs. 

Table 8: Total computation times in microsecond 
Polynomial 
Position 

Polynomial 
Orientation 

Neural Net 
Position 

Neural Net 
Orientation 

 
0.1 

 
0.3 

 
0.7 

 
0.9 

6 CONCLUSIONS 

A novel method for the inverse kinematics solutions 
of anthropomorphic limbs and fast manipulators has 
been proposed.  The method uses the information 
that is processed and stored during off-line for rapid 
on-line access and evaluations.  It decomposes the 
workspace into cells, and uses a classification 
technique to isolate various solutions.  Both 
polynomial and neural networks have been 
investigated for modeling the inverse kinematics 
solutions in a cell.  It has been shown that both 
models provide good position and orientation 
accuracy and high success rates, with the neural 
network having somewhat better performances in 
these regards.  However, the neural network requires 
more off-line time to determine the parameters of 
the model due to training, and also the on-line time 
is slightly higher due to the need for more complex 
operations.  
 The method is especially appealing for use in 
animation and graphics applications.  In these 
applications, high position and orientation accuracy 
is not required, and thus an approximation of the 
inverse kinematics is sufficient. In addition, the 
animation characters require satisfying many 
constraints, in addition to joint limits, to make the 
motion natural and human like. These constraints 
can easy be checked and incorporated within the 
proposed method during the off-line configuration 
generation. It is also noted that animation 
applications involve a number of characters each 
with several 7-DOF limbs.  In such applications, 
very high speed of computation is required, e.g. 
often several thousand inverse kinematics 
computation per second for a 7-DOF limb is 
desirable, which the proposed method can readily 
achieve. By providing all solutions for a given 
posture, the method allows the animator to select the 
solution that is most visually attractive for showing 
a particular motion.    
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