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Abstract: Fuzzy Cognitive Maps (FCMs) have found many applications in social -financial -political problems. In this 
paper we propose a method of FCM operation, which can be used to represent and control any real system, 
including traditional electro-mechanical systems. In the proposed approach the FCM reaches its equilibrium 
point using direct feedback from the node values of the real system and the limitations imposed by the 
control objectives for the node values of the system. The experts’ knowledge, which is represented in the 
weights of the nodes’ interconnections, undergoes a continuous on-line adaptation based on feedback from 
the real system. An algorithm for weight updating is proposed, which is based on system feedback and 
which includes specially designed matrices that lead the FCM and consequently the real system associated 
with it in a balanced equilibrium state. The proposed methodology is tested by simulating the operation of a 
hydro-electric plant.  

1 INTRODUCTION  

Some problems of electrical and mechanical 
engineering are placed in the fuzzy part of science 
and they have been studied thoroughly enough the 
last years from a good many of scientists. A large 
number of different methods have occasionally been 
used in order to work out this kind of problems. The 
scientific community was placed under the 
obligation of giving solutions to problems the 
settlement of which seemed rather difficult the years 
before.  

Fuzzy Cognitive Maps (FCM) can model 
dynamical complex systems that change with time 
following nonlinear laws (Kosko, 1992). FCMs use 
a symbolic representation for the description and 
modeling of the system. In order to illustrate 
different aspects in the behavior of the system, a 
fuzzy cognitive map is consisted of nodes with each 
node representing a characteristic of the system. 
These nodes interact with each other showing the 
dynamics of the system in study. An FCM integrates 
the accumulated experience and knowledge on the 
operation of the system, as a result of the method by 
which it is constructed, i.e., using human experts 

who know the operation of system and its behavior. 
Fuzzy cognitive maps have already been used to 

model behavioral systems in many different 
scientific areas. For example, in political science 
(Schneider, 1998), fuzzy cognitive maps were used 
to represent social scientific knowledge and describe 
decision-making methods (Kottas, 2003), (Zhang, 
1989), (Georgopoulou, 2001). Kosko enhanced the 
power of cognitive maps considering fuzzy values 
for their nodes and fuzzy degrees of 
interrelationships between nodes (Kosko, 1992), 
(Kosko, 1997). After this pioneering work, fuzzy 
cognitive maps attracted the attention of scientists in 
many fields and they have been used in a variety of 
different scientific problems. Fuzzy cognitive maps 
have been used for planning and making decisions in 
the field of international relations and political 
developments (Kottas, 2003) and to model the 
behavior and reactions of virtual worlds. FCMs have 
been proposed as a generic system for decision 
analysis (Zhang, 1989), (Zhang, 1992) and as 
coordinator of distributed cooperative agents. 

One open issue related to FCMs, is their 
operation in close cooperation with the real system 
they describe. This in turn implies that such an on-
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line interaction with the real system might require 
changes in the weight interconnections, which 
reflect the experts’ knowledge about the node 
interdependence. This knowledge might not be 
entirely correct or perhaps, the system has 
undergone to changes during its operation. 

In this paper an FCM operation method is 
proposed, which is in close interaction with the 
system it represents. The FCM nodes are divided in 
control and reference nodes, where control nodes 
represent control variables of the system and 
reference nodes represent either variables with 
constant values or variables with desired (goal) 
values. In the proposed approach, the FCM reaches 
its equilibrium point using direct feedback from the 
node values of the real system and the limitations 
imposed by the reference nodes. The 
interconnections weights are on-line adjusted during 
this operation by using an extended Hebbian 
updating law, which uses the system feedback and 
employs two specially defined collateral matrices, 
which help the FCM to adjust its weights and reach 
an equilibrium point in a more realistic and balanced 
way. 

The paper is organized as follows:   Section 2 
gives a short description of FCMs and their way of 
operation. Section 3 introduces the proposed 
combined operation of the FCM and the real system 
and presents the relevant Hebbian rule to update 
interconnections weights. The proposed weight 
updating method is extended in Section 3.1 to 
include the specially defined placement and 
calibration matrices. Section 4 gives a simulation 
study of a hydro-electric power plant, where a 
comparative study of the proposed method versus 
the traditional approach in reaching equilibrium 
points in FCM is made. The final conclusions are 
given in Section 5. 

2 FUZZY COGNITIVE MAPS 
REPRESENTATION AND 
DEVELOPMENT  

Fuzzy cognitive maps approach is a hybrid modeling 
methodology, exploiting characteristics of both 
fuzzy logic and neural networks theories and it may 
play an important role in the development of 
intelligent manufacturing systems. The utilization of 
existing knowledge and experience on the operation 
of complex systems is the core of this modeling 
approach. Experts develop fuzzy cognitive maps and 
they transform their knowledge in a dynamic 
cognitive map (Miao, 2001). 

The graphical illustration of FCM is a signed 
directed graph with feedback, consisting of nodes 
and weighted interconnections. Nodes of the graph 
stand for the nodes that are used to describe the 
behavior of the system and they are connected by 
signed and weighted arcs representing the causal 
relationships that exist among nodes (Fig. 1). Each 
node represents a characteristic of the system. In 
general it stands for states, variables, events, actions, 
goals, values, trends of the system which is modeled 
as an FCM (Jang, 1995). Each node is   
characterized by a number Ai, which represents its 
value and it results from the transformation of the 
real value of the system's variable, for which this 
node stands, in the interval [0, 1]. It must be 
mentioned that all the values in the graph are fuzzy, 
and so weights of the interconnections belong to the 
interval [-1, 1]. With the graphical representation of 
the behavioral model of the system, it becomes clear 
which node of the system influences other nodes and 
in which degree. 

The most essential part in modeling a system 
using FCMs, is the development of the fuzzy 
cognitive map itself, the determination of the nodes 
that best describe the system, the direction and the 
grade of causality between nodes. The selection of 
the different factors of the system, which must be 
presented in the map, will be the result of a close-up 
on system's operation behavior as been acquired by 
experts. Causality is another important part in the 
FCM design, it indicates whether a change in one 
variable causes change in another, and it must 
include the possible hidden causality that it could 
exist between several nodes. The most important 
element in describing the system is the 
determination of which node influences which other 
and in what degree. There are three possible types of 
causal relationships among nodes that express the 
type of influence from one node to the others. The 
weight of the interconnection between node Ci and 
node Cj denoted by   Wij, could be positive (Wij > 0) 
for positive causality or negative (Wij < 0) for 
negative causality or there is no relationship between 
node Ci, and node Cj, thus Wij = 0. The causal 
knowledge of the dynamic behavior of the system    
is stored    in the    structure of the map and   in the 
interconnections that summarize the correlation 
between cause and effect. The value of each node is 
influenced by the values of the connected nodes with 
the corresponding causal weights and by its previous 
value. So, the value Aj for each node Cj is calculated 
by the following rule, (Jang, 1995):  
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where  s
jA , is the value of node jC   at step s, 1s

i
A −   

is the value of node iC , at step s-1, 1s
jA −  is the value 

of node jC  at step s-1, and ijW  is the weight of the 

interconnection between iC  and jC , and f  is a 
squashing function.  
 

Squashing functions: 
 
1)     f = tanh(x)  maps the nodes values in [-1 , 1] 

   2)  cxe
f

−+
=

1
1  by using c=1 we convert the 

nodes values in [0 , 1]. It also called sigmoid 
function. The second function is the most common 
function which is used in FCM’s. 

3 THE NEW METHOD FOR 
WEIGHT UPDATING  

In this section we will analyze the proposed method 
of updating the interconnections weights of FCM 
taking into account feedback node values from the 
real system. Using the updated weights the FCM 
reaches a new equilibrium point by means of 
equation (1). Some of the new node values can be 
applied   as   control   values to the real system. One 
commonly used technique for updating weights in 
FCMs is the Hebbian updating rule (Kosko, 1986 
a,b),  (Papageorgiou, 2004).  In our   approach   the 
updating is made by using the conventional Hebbian  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
rule, which however, uses measurements from the 
node values taken  from  the  real system.  This  way     
the updating of the weights reflects real changes that 
have to be made in our knowledge about the system, 
which is represented by the interconnection weights. 
This situation is more apparent in cases where there 
exist steady value nodes, which, in the real system, 
are not affected by the values of the other nodes. In 
this case, if the FCM convergence equation (1) is 
left to operate with weight adjustments that do not 
take into account the steady node values fact, then 
the equilibrium point will give node values for the 
above mentioned nodes, which might be different 
than the steady values, which in turn implies an 
unrealistic point of operation for our system.  

Let us, for example, analyze an FCM having one 
or more nodes with constant values. This means that 
no human action can intervene, in a mechanic way 
with this value. Suppose that in the FCM of    Fig. 2 
nodes C1 and C2   cannot change their values. The 
values of these nodes derive from the system that is 
examined. The table of interconnection weights for 
this system is:  

0 0 13 14 0
0 0 23 0 25
0 0 0 34 0
0 0 43 0 0
0 0 53 0 0

W W
W W

W W
W
W

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
We see that columns 1 and 2 that concern nodes C1 
and C2 are zero. When applying equation (1) for 
node value updating we have to consider the steady 
values of nodes C1 and C2 by using a companion 
adjusting equation. Thus, equation (1) is now 
replaced by the following two equations: 

1,

1 1
N

i i j

s s s
ij

j i j
A f A W A

= ≠

− −= +∑
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (1) 

1,

, 1, 1,
N

i i j

s FCM s FCM s FCM
ij

j i j
A f A W A

= ≠

− −= +∑
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

    (2) 

And for the steady state nodes the correction 
equation is:  

Figure 2: FCM with steady stea nodes 

Figure 1: A simple fuzzy cognitive map 
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,s FCM system
j j

A A=  (3) 

where system
j

A  is the node’s value, derived from the 

real system. These values are either measured on-
line or are known beforehand as the steady nodes 
values of the above example. In order to drive the 
FCM in a realistic representation of the system and 
its control actions we have to update the 
interconnection weights using these measured node 
values from the real system. Based on the updated 
weights, equations (1) and (2) will produce a new set 
of node values which represent the control actions 
applied to the real system.  The procedure, which is 
depicted in Fig. 3, is repetitively applied during the 
operation of the system. The weights that are non 
zero are renewed according to the Hebbian rule: 
 

, ,

1,

1

1

s FCM s FCMiji j

N

i i j

A W A

system

j
A

e

p

= ≠

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠+

= −
∑

 (4) 

1 ,(1 )k k s FCM
ij ij i

W W ap p A− + −=  (5) 

where k is the number of iteration and a  is the 
learning rate (usually  =0.1). 

The procedure described in Fig. 3 uses 
repetitively equations (2), (3), (4) and (5) to provide 
with an FCM, which totally corresponds and 
cooperates with the real system. The control nodes 
of the system (nodes C3, C4 and C5 of Fig. 2) are 
now taking values which take into account the 
steady node values (C1 and C2) and the weight 
interconnections updated values. In the next section 
we extend the weight updating equations to include 
two collateral matrices, the one been called 
placement matrix and the other calibration matrix. 
We will see that by including these two matrices in 
the weight updating equations the FCM results in 
more balanced and smooth variations of its node 
values. 

3.1 The Extended Weight Updating 
Law 

The motivation for developing this new extended 
updating law was to find a flexible and credible way 
to drive one or more elements (nodes) of a system in 
a desired position (value). The proposed extended 
method includes two auxiliary collateral matrices Q 
and R. Matrix Q incorporates experts’ opinion about  

 

 
 
 
 
 
 
 
 

the nodes that should be positively or negatively 
affected so that the  driven  node  reaches the desired  
value, provided that the node interdependences are 
determined by weight matrix W. Matrix R contains 
elements that help FCM to converge to the desired 
node values by altering the connected to them nodes 
in a balanced way, avoiding saturation in the nodes 
having already large values. The two matrices Q and 
R can be included in the weight updating law with 
system feedback, described in the previous section, 
leading thus to a new FCM representing the system 
in amore desirable and realistic way.  

The first matrix, called placement matrix, Q, has 
the same dimensions with matrix W. Each element 
Qij   of the placement matrix Q can take one of the 
values {-1, 0, 1}, which reflect the way by which 
node Ci affects node Cj and determines the weights 
that should be updated in order to influence the 
change of node value Cj.  A possible formation of 
matrix Q is the following: If one wants to drive node 
Cj from value 1s

jA −  to a bigger value s
jA , that is 

1s s
j jA A −>  then: 

1 0 1 0, 0 0,ji ij ji ij ji ijQ if W Q if W Q if W= > = − < = =

In the opposite situations, when one wants to drive 
node Cj from value 1s

jA −  to a smaller value s
jA , that 

is 1s s
j jA A −<  then: 

1 0 1 0, 0 0,ji ij ji ij ji ijQ if W Q if W Q if W= < = − > = =

The use of this matrix will be clearer in section 4. 
 
Incorporation of matrix Q in the weight updating 

equations is performed as follows:  

, ,

1,

1

1

s FCM s FCMiji j

N

i i j

A W A

system

j
A

e

p

= ≠

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠+

= −
∑

  

1 ,* ( (1 )k k s FCM
iij ij ij

W W Q ap p A−= + −    (6) 

The calibration matrix R has the same dimension 
with matrix W. Each point Rij of the calibration 
matrix R is computed by the following formula: 

FCM SYSTEM 

Feedback (Asystem) 

Control actions 

Figure 3: Control structure 

AS,FCM

desired
nodes values

experts
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1*

i n

ij
i

ij ij

W

n
W

R

=

==

∑
 if  Wij ≠ 0 and 0

ij
R =  if  Wij =0 (7) 

where n is the learning rate and is defined in the 
interval [0.01, 0.1]. 

It can be seen that for the computation of each 
element of R only the elements of each column of 
matrix W contribute. This is related to the fact that 
each column j of matrix W contains weight 
interconnection values from the nodes which affect 
node j. When matrix R is incorporated in the weight 
updating law, the new weights lead the FCM to a 
more balanced equilibrium point and prevent nodes, 
which already have large values, to saturate. At the 
same time matrix R also causes an enhancement to 
the values of nodes which have small values and 
which, of course affect the nodes to be changed.  

Incorporation of matrix R in the weight updating 
equations is performed as follows:  

, ,

1,

1

1

s FCM s FCMiji j

N

i i j

A W A

system

j
A

e

p

= ≠

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠+

= −
∑

  

1 ,* ( (1 )k k s FCM
iij ij

W W ap p AG−= + −  (8) 

where :        *ij ijG Q R=  (9) 
 

If Cj node must be in a desired value then         
Aj

system = Aj
desired , so that equation 4 for the nodes in 

a desired value becomes: 

 
The complete algorithm which uses system 

feedback, the desired node values and the collateral 
matrices Q, R is shown in Fig. 4. 

4 SYSTEM SIMULATION STUDY 

To demonstrate the method we choose a simple 
mechanical problem of a hydroelectric power station 
shown in Fig. 5. The FCM representation of the 
system is shown in Fig. 6. We want to regulate the 
flow in the two Hydro-generators (1 and 2). In order 
to achieve this we will use the proposed method, to 
control the system and to regulate the values of the 
report and control nodes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The system has one steady value node [River -

reference node1], three control nodes [Valve 2 -  
node 4, Valve 3 - node 6 and Valve 1 –  node 2] and 
two simple operation nodes [Tank 1 - node 3, Tank 2 
- node 5]. One or more of nodes 2, 3, 4, 5 and 6 
values have to be regulated so that hydro-generators 
1 and 2 can receive the desired water flow values.      
     Based on experts knowledge regarding the 
mechanics of the system a possible weight matrix W 
is the following:  

0 0 . 6 0 0 0 0
0 0 0 . 7 6 0 0 0
0 0 . 8 1 0 0 . 3 8 0 0
0 0 0 . 6 0 0 . 8 0
0 0 0 0 . 7 0 0 . 6
0 0 0 0 0 . 4 2 0

W

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

which, after repetitively applying equations (2) and 
(3)  will give  the following  equilibrium  values  for   

, ,

1,

1

1

s FCM s FCMiji j

N

i i j

desired
j

A W A

e

p A

= ≠

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠+

= −
∑   (10) 

Figure 4: Schematic description of the proposed 
algorithm  

Define the desired     
nodes values  acquire   
the initial W matrix 
and compute Q matrix  

Execute eq. (2) and (3) 
to find equilibrium 
points for the FCM 
nodes. 

Send the control nodes 
values from the FCM 
to the real system. 

Calculate the R matrix 
and update weights 
according to eq.  (4), 
(8) and (10)  

Take the nodes values 
from the real system.  

Step 5 

Step 4 

Step 3 

Ai
S,FCM = desired     

           node value  

YES 

Step 1 

Step 2 

Ai
S,FCM =Ai

S-1,FCM NO

NO STOP

YES
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the nodes of the FCM. It should be mentioned that in 
this case equation (3) applies only for the steady 
node 1 value, which in our example is 0.6. 

0 .6 0 .6 5 8 0 .6 5 0 .8 0 .7 5 0 .7A ⎡ ⎤= ⎣ ⎦  
Since we are not absolutely confident about the 

experts’ opinion on matrix W, or we want to 
anticipate any physical changes occurred in the 
system during its operation we proceed in weight 
updating according to the procedure described in 
Fig. 3 using equations (2), (3), (4) and (5). It should 
be noted that, so far, the only desired node value in 
Fig. 3 is the steady node 1 (river). The improved 
weight matrix becomes: 

0 0.9539 0 0 0 0
0 0 0.7592 0 0 0
0 0.6457 0 0.0729 0 0
0 0 0.598 0 0.7999 0
0 0 0 0.3519 0 0.2959
0 0 0 0 0.4201 0

imp
W

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
which, after applying equations (2) and (3), gives the 
following FCM equilibrium node values. 

0.6 0.5592 0.6498 0.7402 0.7362 0.7183A ⎡ ⎤= ⎣ ⎦
 
Case study 1 

We now want to drive node 3 (tank 1) and node 
5 (tank 2) to a specific value. We want to do that 
because the water height in these tanks will affect 
the water flow in Hydrogenerators 1 and 2, which in 
turn influences the produced power. In this approach 
we will use matrices Q and R and we will proceed 
following all the steps of Fig. 4. 

 
Step 1 

We assume that we desire the following values: 
node (3) = 0.652, node (5) = 0.7398, keeping always 
in mind that node 1 (river) has always a steady value 

(0.6). Let also the initial weight matrix W equals 
matrix Wimp computed earlier. 

We calculate matrix Q according to section 3.1. 

 
 
The two sub-matrices of Q, enclosed by dotted lines, 
refer to nodes 3 and 5. The right sub-matrix refers to 
node 5 and declares that in order to drive node 5 in a 
specific value we have to update the elements of the 
W matrix which correspond to the points of the right 
dotted sub-matrix. The same rationale applies for the 
left sub-matrix, which now refers to node 3. The 
centre of each sub-matrix referring to the Ci node 
must be the element Qii. If we don’t want to change 
Ci node then the corresponding sub-matrix is set to 
zero. For example if we want to drive only node 3 
the Q matrix is: 

 
 
Step 2 

Now we execute step 2 of Fig. 4 to calculate 
equilibrium point for the FCM, which is: 

0.6 0.5592 0.6498 0.7402 0.7362 0.7183A ⎡ ⎤= ⎣ ⎦
We must now correct node (3) and node (5) and 
drive them to 0.652 and 0.7398 respectively. 
 
Step 3 

We apply the FCM control nodes values to the 
real system 
 
Step 4 

We get the new node values from the real 
system. We assume that the real system instantly 
responds to the values imposed by step 3.   

 
Step 5 

Calculate calibration matrix R according to 
equation (7): 

0 0 . 1 6 7 6 0 0 0 0
0 0 0 . 1 7 9 0 0 0
0 0 . 2 4 7 0 0 . 5 8 0 0
0 0 0 . 2 2 6 0 0 . 1 5 2 0
0 0 0 0 . 1 2 0 1
0 0 0 0 0 . 2 9 0

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

Figure 5: Hydroelectric station 
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Find the new W matrix that arises by using 
equations (4), (8) and (10). Go to step 2. 

  
After 12 iterations we will find that the FCM 

accurately describes the operation of the real system. 
The final W matrix is: 

 
0 0.9539 0 0 0 0
0 0 0.7696 0 0 0
0 0.4148 0 0.0914 0 0
0 0 0.6138 0 0.8081 0
0 0 0 0.3818 0 0.3431
0 0 0 0 0.4121 0

W final

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
and A vector is:  
 

0.6 0.5655 0.652 0.7485 0.7398 0.7273A ⎡ ⎤= ⎣ ⎦
 
if we don’t use matrices Q and R by executing the 
case study 1 from step 2 to step 5 we will conclude 
to the desired values for nodes 3 and 5 after 45 
iterations. The other node values are however 
different since W matrix is in this case different than 
the one calculated above.  
 
Case study 2 

To make the use of the two matrices clearer we 
give the following example. Suppose we want to 
drive only node 3 (tank 1) in a specific value:      
node 3 = 0.76. We keep in mind that node 1 is a 
steady value node (0.6).  Let also the initial weight 
matrix W equals matrix Wfinal computed above. 
 

Step 1 
Calculate placement matrix Q according to 

Section 3.1: 

 
Step 2 

Now we execute step 2 of Fig. 4 to calculate 
equilibrium points for the FCM, which is: 

0.6 0.5655 0.652 0.7485 0.7398 0.7273A ⎡ ⎤= ⎣ ⎦
We must now correct node (3) and drive it to 0.76. 

 
Step 3 

We apply the FCM control nodes values ro the 
real system 

 
Step 4 

We get the new node values from the real 
system. We assume that the real system instantly 
responds to the values imposed by step 3.   

   
Step 5 

Calculate calibration matrix R according to 
equation (7): 

0 0 . 1 4 3 0 0 0 0
0 0 0 . 1 7 9 0 0 0
0 0 . 3 1 0 0 . 5 1 7 0 0
0 0 0 . 2 2 5 0 0 . 1 5 0
0 0 0 0 . 1 2 4 0 1
0 0 0 0 0 . 2 9 6 0

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Find the new W matrix that arises by using 
equations (4), (8) and (10). Go to step 2. 

 After 16 iterations we find that matrix W and 
vector A are: 

0 0.9539 0 0 0 0
0 0 0.7652 0 0 0
0 0.6 0 0.2642 0 0
0 0 0.5472 0 0.8081 0
0 0 0 0.3818 0 0.3431
0 0 0 0 0.4121 0

W

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

0.6 0.6243 0.76 0.6808 0.7266 0.7273A ⎡ ⎤= ⎣ ⎦
if we don’t use matrices Q and R by executing the 
case study 2 from step 2 to step 5 we will conclude 
after 34 iterations to: 

0 0.5674 0 0 0 0
0 0 0.9236 0 0 0
0 0.8834 0 0.0423 0 0
0 0 0.4220 0 0.8962 0
0 0 0 0.2455 0 0.3431
0 0 0 0 0.3242 0

W

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 

Tank2 (5) 

Valve 1 (2) 

Valve 2 (4) 

Tank 1 (3)  

Valve 3 (6) 

W12 

W32 

W34 

W43 

W23 

W45 
W54 

W56 
W65 

Figure 6: A Fuzzy cognitive map representing the 
hydroelectric factory of Fig. 5 

ICINCO 2005 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

208



and 
0.6 0.7459 0.76 0.7019 0.76 0.7290A ⎡ ⎤= ⎣ ⎦

 
It can be observed that, without matrices Q and 

R, the FCM drives the system to a different 
equilibrium point than the equilibrium reached using 
Q and R matrices. It is apparent that when the 
matrices are not used, in the new equilibrium points 
more node values are different than their initial 
values. On the contrary, when Q and R matrices are 
used only control nodes 2 and 4 are different than 
their initial equilibrium values. This fact is mainly 
due to matrix Q. In large systems which are difficult 
to change their operation we don’t want main 
characteristics to be changed with no reason. Less 
changes we manage, in main characteristics (see 
valves), more flexible system we make.  The effect 
of matrix R is made more apparent from the weight 
changes and the node value changes in the 
equilibrium points. It can be observed that by using 
matrix R the changes in the control node values are 
made in a more balanced way because in this case 
nodes 2 and 4, which affect node 3, change 
proportionally. In respect to the internal operation of 
the algorithm, this is connected to the fact that the 
weights are not allowed to reach their saturation 
values because their change is not allowed to be 
proportional to their previous value (see for example 
W32 and W34).   

5 CONCLUSIONS 

In this paper a new method for weight updating in 
FCMs using system feedback is proposed. So far, 
the existing approaches were using the simple 
method of weight updating without taking into 
account the feedback from the real system. The 
diversity of the proposed method lies in the fact that 
FCM reaches its equilibrium point using direct 
feedback from the node values of the real system 
and the limitations imposed by the reference nodes, 
which nodes represents either variables with 
constant values or variables with desired (goal) 
values. The weights are on-line adjusted during this 
operation by using an extended Hebbian updating 
law, which uses the system feedback and employs 
two specially defined collateral matrices, which help 
the FCM to adjust its weights and reach an 
equilibrium point in a more realistic and balanced 
way. Another benefit of using these matrices, which 
is drawn from experimental results, is the faster 
convergence of the weight updating algorithm.  
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