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Abstract: The problem of zeroing the output in an arbitrary linear discrete-time system S(A,B,C,D) with a 
nonvanishing transfer-function matrix is discussed and necessary conditions for output-zeroing inputs are 
formulated. All possible real-valued inputs and real initial conditions which produce the identically zero 
system response are characterized. Strictly proper and proper systems are discussed separately. 

1 INTRODUCTION 

The problem of zeroing the system output is strictly 
related to the notion of multivariable zeros. These 
zeros, however, are defined in many, not necessarily 
equivalent, ways (for a survey of these definitions 
see MacFarlane and Karcanias, 1976; Schrader and 
Sain, 1989; see also Bourles and Fliess, 1997). The 
most commonly used definition employs the Smith 
canonical form of the system (Rosenbrock) matrix 
and determines these zeros (which will be called in 
the sequel the Smith zeros) as the roots of diagonal 
(invariant) polynomials of the Smith form 
(Rosenbrock, 1970, 1973). The output-zeroing 
problem for continuous-time systems in relationship 
with the Smith zeros was studied, under certain 
simplifying assumptions concerning the systems 
considered, in  (MacFarlane and Karcanias, 1976), 
where the notions of state-zero and input-zero 
directions were introduced, and was interpreted 
geometrically in (Isidori, 1995, pp. 164, 296). A 
more detailed analysis indicates that for 
characterizing the output-zeroing problem the notion 
of Smith zeros is too narrow (Tokarzewski, 2002; 
Tokarzewski and Sokalski, 2004). However, 
extending in a natural way the concept of the Smith 
zeros, the above difficulty can be overcomed. Such 
an extension is based on the definition of invariant 

zeros which employs the system matrix and zero 
directions with nonzero state-zero directions (see 
Tokarzewski, 2002; Tokarzewski and Sokalski, 
2004). Because to each invariant zero we can assign 
a real initial condition and a real-valued input which 
produce the zero output, the invariant zeros can be 
easily interpreted in the context of the output-
zeroing problem. Of course, since each Smith zero is 
also an invariant zero, this interpretation remains 
valid also for Smith zeros. 
Taking into account the above concept of invariant 
zeros, we can state the following question: find a 
state-space characterization of the output-zeroing 
problem (at least in the form of necessary 
conditions) which determines in a simple manner all 
the possible real-valued inputs and real initial 
conditions which produce the identically zero 
system response. For continuous-time systems the 
question was discussed in (Tokarzewski, 2002) and 
for the discrete-time case it was outlined for square 
decouplable systems in (Tokarzewski, 2000). 

2 PRELIMINARY RESULTS 

Consider a discrete-time system S(A,B,C,D) with  m 
inputs and r outputs 
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where  and 

 are real matrices of appropriate 
dimensions. By U  we denote the set of admissible 
inputs which consists of all sequences 
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The point of departure for our discussion is the 
following formulation of the output-zeroing problem 
(Isidori, 1995): find all pairs , consisting 

of an initial state  and an admissible input 
, such that the corresponding output  of 

(1) is identically zero for all . Any nontrivial 
pair (i.e., such that  or ) of this 
kind is called an output-zeroing input. Note that in 
each output-zeroing input ,  
should be understood simply as an open-loop control 
signal which, when applied to (1) exactly at 

, yields  for all . 
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Moreover, we consider the following definition of 
invariant zeros (Tokarzewski, 2000): a complex 
number  is an invariant zero of (1) if and only if 
(iff) there exist vectors  (state-zero 
direction) and  (input-zero direction) such 
that 
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where  denotes the system 

matrix. Transmission zeros of (1) are defined as 
invariant zeros of its minimal (i.e., reachable and 
observable) subsystem.  
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The set of all invariant zeros of (1) is denoted by . IZ
System (1) is called degenerate iff I  is infinite. 
Otherwise, the system is said to be nondegenerate. 
The set of all Smith zeros of (1) we denote by . 

Z

SZ
Recall (Tokarzewski and Sokalski, 2004) that 

; moreover, (1) is nondegenerate iff 

, and (1) is degenerate iff . Recall 
also that in case of nondegeneracy the Smith and 
invariant zeros are exactly the same objects 
(including multiplicities). 
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The same symbol  is used to denote the state-
zero direction in the definition of invariant zeros and 
the initial state in the definition of output-zeroing 
inputs. The state-zero direction  must be a 
nonzero vector (real or complex). Otherwise, the 
definition of invariant zeros becomes senseless (for 
any system (1) each complex number may serve as 
an invariant zero). In other words, in the definition 
of invariant zeros the condition  can not be 
omitted. 
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According to the formulation of the output-zeroing 
problem, the initial state  must be a real vector 
(but not necessarily nonzero). If the state-zero 
direction  is a complex vector, then it gives two 
initial states  and  (and, of course, at 
least one of these initial states must be a nonzero 
vector). 

ox
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Recall (Tokarzewski, 2000, Remark 1) that if 
ϕλ=λ je  is an invariant zero of (1), i.e., a triple 

 satisfies (1a), then this triple generates 
two output-zeroing inputs. Namely, the pair 

, where 
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o ggu  (1b) 

is an output-zeroing input (and produces the solution 
of the state equation of (1) of the form 

)ksinImkcos(Re)k( ook ϕ−ϕλ= xxx ).  

Similarly, the pair , where ))k(,(Im o
o ux

N∈ϕ+ϕλ= k),kcosImksin(Re)k( k
o ggu  (1c) 

is an output-zeroing input (and produces the solution 
of the state equation of (1) of the form 

)kcosImksin(Re)k( ook ϕ+ϕλ= xxx ). 

We denote by  the Moore-Penrose pseudo-
inverse of matrix M (Ben-Israel and Greville, 2002). 
Recall (Gantmacher, 1988) that for a given  rxm real 
M of rank p, a factorization  with an 
rxp  and a pxm  is called the skeleton 

factorization of M. Then  is uniquely 
determined as , where 

 and . 
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Consider the equation , , where 
M is a rxm real and constant matrix of rank  and 

 is a fixed sequence, and suppose that 
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this equation is solvable in the class of all sequences 
 (i.e., there is at least one solution). 

Then any solution can be expressed as 
, where  and 

 is a solution of the equation 

mRN →:(.)z
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)k(hz 0Mz =)k( . 

3 MAIN RESULTS 

3.1 Proper Systems  )( 0D ≠

A general characterization of output-zeroing inputs 
and the corresponding solutions is given in the 
following result. 
 
Proposition 1  Let  be an output-
zeroing input for a proper system (1) and let  
denote the corresponding solution. Then 
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Moreover,  for all CDDIx )(Ker)k(o
+−∈ r N∈k . 

 
Remark 1  Proposition 1 does not tell us whether 
the output-zeroing inputs exist. However, if the set 
of invariant zeros is nonempty, for each such zero 
there exists an output-zeroing input (see (1b) and 
(1c)) which in turn may be characterized as in 
Proposition 1. 
 
Proposition 2  Let  be an output-
zeroing input for a proper system (1) and let  
denote the corresponding solution. Then 
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Remark 2  The assumption  

does not imply in general that  for all 
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N∈k . It implies, however, that  and  

applied at the initial state  affect the state 
equation of (1) in the same way. This follows from 
the relation . 
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When D has full row rank, the necessary condition 
given by Proposition 1 becomes also sufficient. 
 
Proposition 3  In (1) let D have full row rank. 
Then  is an output-zeroing input iff 

 has the form (2), where  and  
is an element of U satisfying  for all 
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A more detailed characterization of the output-
zeroing problem than that obtained in Proposition 2 
(ii) is given by the following result. 
 
Proposition 4  In (1) let D have full column rank. 
Then  is an output-zeroing iff ))k(,( o
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Remark 3  Any proper system (1) can be 
transformed, by introducing an appropriate pre-
compensator, into a proper system in which the first 

A GENERAL SOLUTION TO THE OUTPUT-ZEROING PROBLEM FOR DISCRETE-TIME MIMO LTI SYSTEMS -
Signal Processing, Systems Modelling and Control

139



 

nonzero Markov parameter has full column rank. In 
fact, suppose that mp <=Drank . Let 21DDD =  
be a skeleton factori ducin
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2D  to (1), we get a sytem with the 

first nonzero arkov parameter TDD  of full 
column rank. Finally, by introdu  into a 
reachable system (1) the precompensator T

2D , 
reachability may be lost. 
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assumption ∅=IZ  with ∅=SZ  (see Example 2). 
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Remark 8   Any strictly proper system (1) with 
nonvanishing transfer-function matrix can be 
transformed, by introducing an appropriate pre-
compensator, into a strictly proper system in which 
the first nonzero Markov parameter has full column 
rank. In fact, suppose that . Let 

 be a skeleton factorization. 

Introducing to (1) the precompensator , we get a 
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For a strictly proper system (1) we denote by 

 the maximal output-nulling controlled 
invariant subspace (Basile and Marro, 1992; 
Wonham, 1979; Sontag, 1990). Recall also that if 

 is an output-zeroing input for (1) and 
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i.e., the system has no invariant zeros iff its maximal 
output-nulling controlled invariant subspace is 
trivial. 
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Remark 9  It is important to note that Lemma 2  
and Proposition 10 are not valid if we replace the 
assumption  with  (see Example 1).  ∅=IZ ∅=SZ
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4 EXAMPLES 

Example 1  In (1) let 
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The system has no Smith zeros; on the other hand 
(see Tokarzewski and Sokalski, 2004, Proposition 
9), it is degenerate (i.e., ). Since  has full 
row rank, all output-zeroing inputs are as in 
Proposition 8. Note that , i.e., 
the maximal output-nulling controlled invariant 
subspace is nontrivial (comp. Remark 9). 
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Example 2    In (1) let 
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The system has no Smith zeros; on the other hand 
(see Tokarzewski, 2002, p.188), it is degenerate and 

 is non-
trivial (comp. Remark 4). 
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5 CONCLUDING REMARKS 

In this paper we presented necessary conditions for 
output-zeroing inputs and the corresponding 
solutions (Propositions 1 and 6) for a general class 
of linear discrete-time systems described by the 
state-space model (1). It is shown that if the first 
nonzero Markov parameter has full row rank, the 
necessary conditions become also sufficient 
(Propositions 3 and 8). Necessary and sufficient 
conditions for output-zeroing inputs for systems 
with the first nonzero Markov parameter of full 
column rank are given in Propositions 4 and 9. 
Finally, necessary and sufficient conditions for 
output-zeroing inputs under the assumption that the 

set of invariant zeros is empty are presented in 
Propositions 5 and 10. 
A more detailed characterization of the output-
zeroing problem can be obtained by using singular 
value decomposition of the first nonzero Markov 
parameter. 
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