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Abstract: Distributed stochastic search is proposed for cooperative behavior in multi-robot systems. Distributed gradient
is examined. This method consists of multiple stochastic search algorithms that start from different points in
the solutions space and interact to each other while moving towards the goal position. Distributed gradient is
shown to be efficient when the motion of the robots towards the goal position is described by a quadratic cost
function. The algorithm’s performance is evaluated through simulation tests.

1 INTRODUCTION

In the recent years there has been growing interest
in multi-robot systems (Guo and Parker, 2002). As
the cost of robots goes down and as robots become
more compact the number of military and industrial
applications of multi-robot systems increases. Possi-
ble industrial applications of multi-robot systems in-
clude hazardous inspection, underwater or space ex-
ploration, assembling and transportation. Some ex-
amples of military applications are guarding, escort-
ing, patrolling and strategic behaviors, such as stalk-
ing and attacking.
Of primary importance in the design of multi-robot
systems is motion planning through obstacles. To
solve this problemdistributed gradient algorithms
are proposed. These are an extension of the poten-
tial fields methods which have have been previously
used for robot path-planning (Khatib, 1986)-(Reif and
Wang, 1999). The potential of each robot consists of
two terms: (i) the costV i due to the distance of the
i-th robot from the goal state, (ii) the cost due to the
interaction with the otherM − 1 robots. Moreover,
a repulsive field, generated by the proximity to obsta-
cles, is taken into account. The differentiation of the
aggregate potential provides the kinematic model for
each robot. It is proved that the velocity update equa-
tion is equivalent to a distributed gradient algorithm.
The convergence to the goal state is studied with the
use of Lyapunov stability theory. It is shown that in

the case of a quadratic cost functionV i the mean po-
sition of the multi-robot system converges to the goal
statex∗ while each robot stays in a bounded area close
to x∗. These results are also of interest for research in
the area of particle systems where similar problems of
cooperative behavior are studied (Levine and Rappel,
2000).
The structure of the paper is as follows: In Section
2 elements of stochastic search algorithms are
summarized and distributed gradient is proposed for
multi-robot motion planning. Stability analysis of the
distributed gradient algorithms is performed with the
use of Lyapunov theory. In Section 3 the performance
of the distributed gradient algorithm in the problem
of multi-robot motion planning is tested through
simulation tests. Finally, in Section 4 concluding
remarks are stated.

2 DISTRIBUTED STOCHASTIC
SEARCH

Motion planning of multi-robot systems can be solved
with the use ofdistributed stochastic search algo-
rithms. These can be multiple gradient algorithms
that start from different points in the solutions space
and interact to each other while moving towards the
goal position. Distributed gradient algorithms, stem
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from stochastic search algorithms treated in (Duflo,
1996) if an interaction term is added:

xi(t + 1) = xi(t) + γi(t)[h(xi(t)) + ei(t)]+∑M

j=1,j 6=ig(xi − xj), i = 1, 2, · · · ,M

(1)
The termh(x(t)i) = −∇xiV i(xi) indicates a local
gradient algorithm, i.e. motion in the direction of
decrease of the cost functionV i(xi) = 1

2
ei(t)

T
ei(t).

The term γi(t) is the algorithm’s step while the
stochastic disturbanceei(t) enables the algo-
rithm to escape from local minima. The term∑M

j=1,j 6=ig(xi − xj) describes the interaction be-
tween thei-th and the restM − 1 stochastic search
algorithms. Convergence analysis based on the
Lyapunov stability theory can be stated in the case of
distributed gradient algorithms. This is important for
the problem of multi-robot motion planning.

2.1 Kinematic model of the
multi-robot system

The objective is to lead a swarm ofM mobile robots,
with different initial positions on the 2-D plane, to a
desirable final position. The position of each robot
in the 2-D space is described by the vectorxi ∈ R2.
The motion of the robots is synchronous, without time
delays, and it is assumed that at every time instant
each roboti is aware about the position and the ve-
locity of the otherM − 1 robots. The cost function
that describes the motion of thei-th robot towards the
goal state is denoted asV (xi) : Rn → R. The value
of V (xi) is high on hills, small in valleys, while it
holds∇xiV (xi) = 0 at the goal position and at lo-
cal optima. The following conditions must hold: (i)
The cohesion of the swarm should be maintained, i.e.
the norm||xi − xj || should remain upper bounded
||xi − xj || < ǫh, (ii) Collisions between the robots
should be avoided, i.e.||xi − xj || > ǫl, (iii) Conver-
gence to the goal state should be succeeded for each
robot through the negative definiteness of the associ-
ated Lyapunov functioṅV i(xi) = ėi(t)

T
ei(t) < 0.

(Rigatos, et al., 2001). The interaction between the
i-th and thej-th robot is taken to be

g(xi−xj) = −(xi−xj)[ga(||xi−xj ||)−gr(||x
i−xj ||)]

(2)
wherega() denotes the attraction term and is domi-
nant for large values of||xi −xj ||, whilegr() denotes
the repulsion term and is dominant for small values of
||xi − xj ||. Functionga() can be associated with an
attraction potential, i.e.∇xi

Va(||xi − xj ||) = (xi −
xj)ga(||xi − xj ||). Functiongr() can be associated

with a repulsion potential, i.e.∇xi
Vr(||x

i − xj ||) =
(xi − xj)gr(||x

i − xj ||). A suitable functiong() that
describes the interaction between the robots is given
by (Gazi and Passino, 2004)

g(xi − xj) = −(xi − xj)(a − be
−||xi−xj ||2

σ2 ) (3)

where the parametersa, b andc are suitably tuned. It
holds thatga(xi − xj) = −a, i.e. attraction has a lin-
ear behavior (spring-mass system)||xi − xj ||ga(xi −

xj). Moreover,gr(x
i − xj) = be

−||xi−xj ||2

σ2 which
means thatgr(x

i − xj)||xi − xj || ≤ b is bounded.
Applying Newton’s laws to thei-th robot yields

ẋi = vi

miv̇i = U i (4)

where the aggregate force isU i = f i + F i. The term
f i = −Kvvi denotes friction, while the termF i is
the propulsion. Assuming zero accelerationv̇i = 0
one getsF i = Kvvi, which forKv = 1 andmi = 1
givesF i = vi. Thus an approximate kinematic model
is

ẋi = F i (5)

According to the Euler-Langrange principle, the
propulsionF i is equal to the derivative of the total
potential of each robot, i.e.

F i = −∇xi{V i(xi) + 1

2

∑M

i=1

∑M

j=1,j 6=i[Va(||xi −

xj || − Vr(||x
i − xj ||)]} ⇒ F i = −∇xi{V i(xi)} −∑M

j=1,j 6=i[∇xiVa(||xi−xj ||)−∇xiVr(||x
i−xj ||)] ⇒

F i = −∇xi{V i(xi)} +
∑M

j=1,j 6=i[−(xi −

xj)ga(||xi − xj ||) + (xi − xj)gr(||x
i − xj ||)] ⇒

F i = −∇xi{V i(xi)} +
∑M

j=1,j 6=ig(xi − xj).

Substituting in Eq. (5) one gets Eq. (1), i.e.
xi(t + 1) = xi(t) + γi(t)[−∇xiV i(xi) + ei(t +

1)] +
∑M

j=1,j 6=ig(xi − xj), i = 1, 2, · · · ,M , with
γi(t) = 1, which verifies that the kinematic model
of a multi-robot system is equivalent to a distributed
gradient search algorithm.

2.2 Stability of the multi-robot
system

The behaviour of the multi-robot system is deter-
mined by the behaviour of its center (mean of the
vectorsxi) and of the position of each robot with
respect to this center. The center of the multi-robot
system is given bȳx = E(xi) = 1

M

∑M
i=1

xi, there-

fore ˙̄x = 1

M

∑M

i=1
ẋi ⇒ ˙̄x = 1

M

∑M

i=1
[−∇xiV i(xi)−
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∑M

j=1,j 6=i(g(xi − xj))].

From Eq. (3) it can be seen thatg(xi−xj) = −g(xj−
xi), i.e. g() is an odd function. Therefore, it holds that
1

M
(
∑M

j=1,j 6=ig(xi − xj)) = 0, and

˙̄x =
1

M

M∑

i=1

[−∇xiV i(xi)] (6)

Denoting the goal position byx∗ , and the distance
between thei-th robot and the mean position of the
multi-robot system byei(t) = xi(t)− x̄ the objective
of distributed gradient for robot motion planning can
be summarized as follows: (i)limt→∞x̄ = x∗, i.e.
the center of the multi-robot system converges to the
goal position, (ii)limt→∞xi = x̄, i.e. thei-th robot
converges to the center of the multi-robot system,
(iii) limt→∞ ˙̄x = 0, i.e. the center of the multi-robot
system stabilizes at the goal position. If conditions (i)
and (ii) hold thenlimt→∞xi = x∗. Furthermore, if
condition (iii) also holds then all robots will stabilize
close to the goal position.

It is known that the stability of local gradient algo-
rithms can be proved with the use of Lyapunov theory.
A similar approach can be followed in the case of the
distributed gradient algorithms given by Eq. (1) (Gazi
and Passino, 2004). The following simple Lyapunov
function is considered for each gradient algorithm:

Vi =
1

2
eiT ei ⇒ Vi =

1

2
||ei||

2 (7)

Thus, one getṡV i = eiT ėi ⇒ V̇ i = (ẋi − ˙̄x)ei ⇒

V̇ i = [−∇xiV i(xi) −
∑M

j=1,j 6=ig(xi − xj) +
1

M

∑M

j=1
∇xj V j(xj)]ei. Substitutingg(xi−xj) from

Eq. (3) yieldsV̇i = [−∇xiV i(xi) −
∑M

j=1,j 6=i(x
i −

xj)a +
∑M

j=1,j 6=i(x
i − xj)gr(||x

i − xj ||) +
1

M

∑M
j=1

∇xj V j(xj)]ei ⇒ V̇i = −a[
∑M

j=1,j 6=i(x
i −

xj)]ei +
∑M

j=1,j 6=igr(||x
i − xj ||)(xi − xj)T ei −

[∇xiV i(xi) − 1

M

∑M
j=1

∇xj V j(xj)]T ei.

It holds that
∑M

j=1
(xi − xj) = Mxi −

M 1

M

∑M
j=1

xj = Mxi − Mx̄ = M(xi − x̄) = Mei,
therefore

V̇i = −aM ||ei||2 +
PM

j=1,j 6=i
gr(||x

i − xj ||)(xi − xj)T ei

−[∇xiV
i(xi) − 1

M

PM

j=1
∇xj V j(xj)]T ei

(8)

It assumed that for allxi there is a constant̄σ such
that

||∇xiV i(xi)|| ≤ σ̄ (9)

Eq. (9) is reasonable since for a robot moving on a 2-
D plane, the gradient of the cost function∇xiV i(xi)
is expected to be bounded. Moreover it is known that
the following inequality holds:

M∑

j=1,j 6=i

gr(x
i − xj)T ei≤

M∑

j=1,j 6=i

bei≤

M∑

j=1,j 6=i

b||ei||

Thus the application of Eq. (8) giveṡV i≤aM ||ei||2+∑M
j=1,j 6=igr(||x

i − xj ||)||xi − xj || · ||ei|| +

||∇xiV i(xi) − 1

M

∑M

j=1
∇xj V j(xj)||||ei|| ⇒

V̇ i≤aM ||ei||2 + b(M − 1)||ei|| + 2σ̄||ei|| where it
has been taken into account that

MX
j=1,j 6=i

gr(||x
i−x

j ||)T ||ei||≤
MX

j=1,j 6=i

b||ei|| = b(M−1)||ei||

and from Eq. (9)

||∇xiV i(xi) − 1

M

∑M

j=1
∇xiV j(xj)||≤

||∇xiV i(xi)|| + 1

M
||
∑M

j=1
∇xiV j(xj)||≤

σ̄ + 1

M
Mσ̄ ≤ 2σ̄

Thus, one gets

V̇ i≤aM ||ei||·[||ei|| −
b(M − 1)

aM
− 2

σ̄

aM
] (10)

The following boundǫ is defined:

ǫ =
b(M − 1)

aM
+

2σ̄

aM
=

1

aM
(b(M −1)+2σ̄) (11)

Thus, when||ei|| > ǫ, V̇i will become negative and
consequently the errorei = xi − x̄ will decrease.
Therefore the errorei will remain in an area of radius
ǫ i.e. the positionxi of the i-th robot will stay in the
cycle with center̄x and radiusǫ.

2.3 Stability in the case of a
quadratic cost function

The case of a convex quadratic cost function is exam-
ined, for instance

V i(xi) =
A

2
||xi − x∗||2 =

A

2
(xi − x∗)T (xi − x∗)

(12)
where x∗ = [0, 0] is a minimum point
V i(xi = x∗) = 0. The distributed gradient al-
gorithm is expected to converge tox∗. The robotic
vehicles will follow different different trajectories on
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the 2-D plane and will end at the goal position.

Using Eq.(12) yields∇xiV i(xi) = A(xi − x∗).
Moreover, the assumption∇xiV i(xi) ≤ σ̄ can be
used, since the gradient of the cost function remains
bounded. The robotic vehicles will concentrate round
x̄ and will stay in a radiusǫ given by Eq. (11).
The motion of the mean position̄x of the vehicles is
˙̄x = − 1

M

∑M

i=1
∇xiV i(xi) ⇒ ˙̄x = − A

M
(xi − x∗) ⇒

˙̄x − ẋ∗ = − A
M

xi + A
M

x∗ ⇒ ˙̄x − ẋ∗ = −A(x̄ − x∗)
The variableeσ = x̄−x∗ is defined, and consequently

ėσ = −Aeσ ⇒ ǫσ(t) = c1e
−At + c2 (13)

with c1 + c2 = eσ(0). Eq. (13) is an homogeneous
differential equation, which forA > 0 results into
limt→∞eσ(t) = 0, thus limt→∞x̄(t) = x∗. It is
left to make more precise the position to which each
robot converges.

2.4 Convergence analysis using La
Salle’s theorem

It has been shown thatlimt→∞x̄(t) = x∗ and
from Eq. (10) that each robot will stay in a cycle
C of centerx̄ and radiusǫ given by Eq. (11). The
Lyapunov function given by Eq. (7) is negative
semi-definite, therefore asymptotic stability cannot
be guaranteed. It remains to make precise the area of
convergence of each robot in the cycleC of centerx̄
and radiusǫ. To this end, La Salle’s theorem can be
employed (Gazi and Passino, 2004), (Khalil, 1996).

La Salle’s Theorem: Assume the autonomous system
ẋ = f(x) wheref : D → Rn. AssumeC ⊂ D a
compact set which is positively invariant with respect
to ẋ = f(x), i.e. if x(0) ∈ C ⇒ x(t) ∈ C ∀ t
. Assume thatV (x) : D → R is a continuous
and differentiable Lyapunov function such that
V̇ (x) ≤ 0 for x ∈ C, i.e. V (x) is negative semi-
definite inC. Denote byE the set of all points in
C such thatV̇ (x) = 0. Denote byM the largest
invariant set inE and its boundary byL+, i.e. for
x(t) ∈ E : limt→∞x(t) = L+, or in other words
L+ is the positive limit set of E. Then every solution
x(t) ∈ C will converge toM ast → ∞.

La Salle’s theorem in applicable in the case of the
multi-robot system and helps to describe more pre-
cisely the area round̄x to which the robot trajectories
xi will converge. A generalized Lyapunov function
is introduced which is expected to verify the stability
analysis based on Eq. (10). It holds that:

V (x) =
∑M

i=1
V i(xi) + 1

2

∑M

i=1

∑M

j=1,j 6=i{Va(||xi −

xj || − Vr(||x
i − xj ||)} ⇒ V (x) =

∑M
i=1

V i(xi) +
1

2

∑M

i=1

∑M

j=1,j 6=i{a||x
i − xj ||2 − Vr(||x

i − xj ||),
and

∇xiV (x) = [
∑M

i=1
∇xiV i(xi)] +

1

2

∑M

i=1

∑M

j=1,j 6=i∇xi{a||xi − xj ||2 − Vr(||x
i −

xj ||)} ⇒ ∇xiV (x) = [
∑M

i=1
∇xiV i(xi)] +∑M

j=1,j 6=i(x
i − xj){ga(||xi − xj ||) − gr(||x

i −

xj ||)} ⇒ ∇xiV (x) = [
∑M

i=1
∇xiV i(xi)] −∑M

j=1,j 6=ig(||xi − xj ||)

and using Eq. (1) withγi(t) = 1 yields∇xiV (x) =
−ẋi, and

V̇ (x) = ∇xV (x)T ẋ =
∑M

i=1
∇xiV (x)T ẋi ⇒

V̇ (x) = −
∑M

i=1
||ẋi||2 ≤ 0

(14)
Therefore, in the case of a quadratic cost func-
tion it holds V (x) > 0 and V̇ (x)≤0 and the set
C = {x : V (x(t)) ≤ V (x(0))} is compact and
positively invariant. Thus, by applying La Salle’s
theorem one can show the convergence ofx(t) to the
setM ⊂ C, M = {x : V̇ (x) = 0} ⇒ M = {x :
ẋ = 0}.

2.5 Stability in the case of a cost
function with local minima

The following multi-modal Gaussian cost function is
considered

V i(xi) = −

N∑

j=1

Aj

2
e

−||xi−cj ||2

σj2 (15)

wherecj ∈ Rn is the center of thei-th Gaussian,
σj ∈ Rn is the variance of thei-th Gaussian, and
Aj ∈ R defines if the Gaussian stands for hill (Aj >
0) or a valley (Ai < 0). The gradient of the multi-
modal Gaussian function in given by

∇xiV i(xi) =

N∑

j=1

Aj

σj2
(xi − cj)e

−||xi−cj ||2

σj2 (16)

The velocity of thei-th robot is given by Eq.(1)

ẋi = −∇xiV
i(xi)−

−
PM

j=1,j 6=i
(xi − xj)[ga(||xi − xj ||) − gr(||(x

i − xj)||)]
(17)
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while the velocity of the center of the multi-robot sys-
tem is given by Eq. (6)

˙̄x = − 1

M
∇xiV i(xi) ⇒

˙̄x = − 1

M

∑N
j=1

Aj

σj2 (xi − cj)e
−||xi−cj ||2

σj2

(18)

Eq. (18) does not give any information about the di-
rection of the center̄x of the multi-robot system. Un-
der specific assumptions convergence to local minima
(valleys) or divergence from local maxima (hills) can
be shown. To this end , it is assumed that att = 0
holds,

||xi(0) − ck||≤σk, k : 1≤k≤N

||xi(0) − cj ||≥σj , k : 1≤j≤N

This means that the multi-robot system goes close to
the Gaussian with centerck and stays far from the
Gaussian with centercj . The following error defini-
tion is given

ek = x̄ − ck (19)

and the Lyapunov functionV k = 1

2
ekT

ek is consid-
ered. It holds that

V̇ k = (ėk)T ek ⇒ V̇ k = ˙̄xT ek ⇒

V̇ k = [− 1

M

∑N

j=1

Aj

σj2 (xi − cj)e
−||xi−cj ||2

σj2 ]ek

Assuming that(xi−cj) < (ek)T , i.e.xi−cj < x̄−ck,
i.e. the mean of the multi-robot system is closer to the
valleyk yields

V̇ k < −
1

M

N∑

j=1

Aj

σj2
e

−||xi−cj ||2

σj2 ||ek||2.

Therefore, forAj < 0 it holds thatV̇ k < 0 and the
multi-robot system will converge to thek-th Gaussian
centerck.

3 SIMULATION TESTS

In the conducted simulation tests the multi-robot sys-
tem consisted of 10 robots which were randomly ini-
tialized in the 2-D field. Two cases were distin-
guished: (i) motion in an obstacle-free environment
(Fig. 1 - Fig. 2 and (ii) motion in an environment
with obstacles (Fig. 5 - Fig. 6). The objective was
to lead the robot swarm to the origin[x, y] = [0, 0].
To avoid obstacles, apart from the motion equations
given in Sections 2 repulsive forces between the ob-
stacles and the robots had to be taken into account.
The reactive robot behavior for obstacle avoidance

prevailed locally the motion laws which were derived
using potential fields theory. This means that the col-
lision avoidance was set to higher priority than main-
tenance of the cohesion of the robots swarm.

−10 −5 0 5 10

−10

−5

0

5

10

X

Y

Figure 1: Motion of the individual robots in an obstacles-
free environment, considering a quadratic cost function.
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−5

0

5

10
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Y

Figure 2: Motion of the mean of the multi-robot system in
an obstacles-free environment, considering a quadratic cost
function.

For the motion in an obstacle-free environment, the
evolution of the aggregate Lyapunov function of the
multi-robot system, as well as of the Lyapunov func-
tions of the individual robots, is depicted in Fig. 3 and
Fig. 4.
When the multi-robot system evolved in an envi-
ronment with obstacles, the interaction between the
individual robots (attractive and repulsive forces)
had to be loose, so as to give priority to obstacles
avoidance. Therefore coefficientsa and b in Eq.
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Figure 3: Lyapunov function of the individual robots in an
obstacles-free environment.
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Figure 4: Lyapunov function of the mean of the multi-robot
system in an obstacles-free environment.

(3) g(xi − xj) = −(xi − xj)(a − be
||xi−xj ||2

σ2 )
were set to small values. The repulsive po-
tential due to the obstacles was calculated by

g(xi − xj) = −(xi − xj
o)(a − be

||xi−x
j
o||2

σ2 ), where
xj

o was the center of thej-th obstacle.

The relative values of the parametersa andb that ap-
pear in the attractive and repulsive potential respec-
tively, affected the performance of the algorithm. For
a > b the cohesion of the robotic swarm was main-
tained and abrupt displacements of the individual ro-
bots were avoided.
For the motion in an environment with obstacles, the
evolution of the aggregate Lyapunov function of the
multi-robot system, as well as of the Lyapunov func-
tions of the individual robots, is depicted in Fig. 7
and Fig. 8 . Comparing to Fig. 3 and Fig. 4 the dif-
ferences are due to the smaller value of the attractive
force coefficienta.
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Figure 5: Motion of the individual robots in an environment
with obstacles, considering a quadratic cost function.
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Figure 6: Motion of the mean of the multi-robot system in
an environment with obstacles, considering a quadratic cost
function.

4 CONCLUSIONS

In this paper the problem of distributed multi-robot
motion planning was studied. AM -robot swarm was
considered and the objective was to lead the swarm
to a goal position. The kinematic model of the robots
was derived using the potential fields theory. The po-
tential of each robot consisted of two terms: (i) the
costV i due to the distance of thei-th robot from the
goal state, (ii) the cost due to the interaction with the
otherM − 1 robots. The differentiation of the poten-
tial provided the kinematic model for each robot. It
was proved that the velocity update equation is equiv-
alent to adistributed gradient algorithm. The con-
vergence to the goal state was studied with the use
of Lyapunov stability theory. It was shown that in the
case of a quadratic cost functionV i the mean position
of the multi-robot system converges to the goal state
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Figure 7: Lyapunov function of the individual robots in an
environment with obstacles.
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Figure 8: Lyapunov function of the mean of the multi-robot
system in an environment with obstacles.

x∗ while each robot stays in a bounded area close to
x∗.
Distributed gradient for multi-robot motion planning
was evaluated through simulation tests. It was ob-
served that when the multi-robot system was evolving
in an environment with obstacles, the interaction be-
tween the individual robots (attractive and repulsive
forces) had to be loose, so as to give priority to obsta-
cles avoidance. The performance of the method was
satisfactory. The algorithm succeeded cooperative be-
havior of the robots without requirement for explicit
coordination or communication.
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