Mobile Agent System for Web Services
Integration in Pervasive Networks

Fuyuki Ishikawa!, Nobukazu Yoshioka?, Yasuyuki Tahara?, Shinichi Honiden?:!

! Graduate School of Information Science and Technology
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
2 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. Web Services integration using languages such as BPEL is to
be applied not only on the Internet but also in pervasive networks using
wireless mobile devices. However, in such a network it is necessary to
deal with constraints in resources, typically the relative narrowness and
instability of network connections. Our study adopts the mobile agent
technology in response to this problem and presents a mobile agent sys-
tem for Web Services integration. In our system, the physical behaviors
of mobile agents, including migration and cloning, are separated from the
integration logic and are described as simple rules added to the BPEL
integration process description. This makes it possible to add or change
physical behaviors according to the environmental conditions without
modification of the BPEL description.

1 Introduction

Research on XML Web Service technologies for the dynamic integration of ser-
vices has recently commenced[1]. The goal of the Web Services effort is to achieve
universal interoperability between applications by using Web standards. Web
Services use a loosely coupled integration model to allow flexible integration
of heterogeneous systems. Starting from the basic specifications for messaging
and service description, the Web Service technologies now include languages for
specifying how to integrate existing services and compose a just-in-time service.
BPEL (Business Process Execution Language for Web Services)[2] is common
one of such languages and defines a notation of an integration process based on
interactions between the process and its partners (existing services or clients).
On the other hand, the rapid development of mobile devices and wireless
technologies is leading to new applications in pervasive networks. In pervasive
networks, both users and service providers utilize mobile computers/devices com-
municating with each other using wireless connections. For example, the user
accesses services in the wireless LAN to obtain information about the shops he
is about to visit, as he accesses services on the Internet using wired connections.
As the Web Services technologies provide the basis for interoperability and
dynamic discovery and integration of services, their benefits exist not only on

Ishikawa F., Yoshioka N., Tahara Y. and Honiden S. (2004).

Mobile Agent System for Web Services Integration in Pervasive Networks.

In Proceedings of the 1st International Workshop on Ubiquitous Computing, pages 38-47
DOI: 10.5220/0002681900380047

Copyright © SciTePress



39

the Internet but also in the pervasive networks. Now Web Services can be imple-
mented on mobile devices[3]. However, since the Web Services effort has mainly
targeted services on the Internet and the interaction models are heavily based
on remote messaging, they cannot be applied directly in pervasive networks, due
to the relative narrowness and instability of wireless connections. As a typical
example, it becomes inadequate in pervasive networks to exchange multimedia
data itself between distributed services in order to compose a multimedia infor-
mation collection service.

Our study adopts the mobile agent technology in response to this problem
and presents a mobile agent system for Web Services integration. A mobile agent
is a software component that has the ability to move from one host to another
while preserving its state. It has been utilized for adaptation to various environ-
ments, typically mobile computing environments[4, 5]. On realizing integration
by mobile agents, it is important to facilitate change of physical behaviors with-
out modification of the integration logic, in order to adapt to changes in the
environments. Considering this requirement, in our system the physical behav-
iors of mobile agents, including migration and cloning, are separated from the
integration logic and described as simple rules added to the BPEL description.
This makes it possible to add or change physical behaviors according to the
environmental conditions without modification of the BPEL description.

In Section 2 of this paper, we discuss the problems in Web Services integration
in pervasive networks and show our approach utilizing mobile agents. We present
our system model in Section 3 and discuss implementation issues in Section 4.
We present several considerations and the conclusion in Section 5 and 6.

2 Web Services Integration in Pervasive Networks

In this section, we present a brief introduction of the Web Services integration
using BPEL and discuss a problem in realizing it in pervasive networks. We then
describe how we apply the mobile agent technology to the problem.

2.1 Web Services Integration using BPEL

BPEL (Business Process Execution Language for Web Services)[2] is an XML
language used to describe an executable process that provides a new service by
integrating existing services.! Figure 1 illustrates an example of the structure of
such a process. This process first receives a request from a client, concurrently
invokes two data services and then an analysis/search service for each obtained
data, and finally assigns the results to a variable and replies to the service con-
sumer. In BPEL each involved task is called an activity. The example shown in
Fig. 1 includes the basic activities of receive, invoke, assign, and reply. These
activities are nested in structured activities that represent activity control infor-
mation (sequence and flow in the figure). A sequence activity indicates sequential

! Interfaces of all these services are described using WSDL (Web Services Description
Language)[6].



40

execution of nested activities and a flow activity indicates that control flow of
nested activities is specified in a graph-oriented manner with link elements(the
arrows in the figure). In this way, BPEL defines a notation of an integration
process based on interactions between the process and its partners (existing ser-
vices or clients). BPEL includes many other activities for branch, iteration, fault
handling, event handling, and compensation.

sequence .
receive
“receivelnput”

flow

sequence sequence
invoke invoke

“invokeShop1” “invokeShop2”

invoke
‘analyzeShop2”,

invoke
‘analyzeShop1”

assign
“resultSet”

repl
“replyResult”

el
<

Fig. 1. Example of BPEL Process Structure

The BPEL process described here integrates two types of services: (1) ser-
vices providing multimedia information with a standardized general interface for
queries based on metadata, and (2) services providing methods for specialized,
sophisticated, or original analysis/search of the multimedia data itself. Like this,
BPEL and the underlying Web Service technologies promote the dynamic and
arbitrary combination of services, facilitating composition of an original just-in-
time service by selecting favorite service providers as partners. 2

2.2 Problems in Pervasive Networks

As the Web Services technologies provide the basis for interoperability and dy-
namic discovery and integration of services, their benefits exist not only on the
Internet but also in pervasive networks. However, since the Web Services ef-
fort has mainly targeted services on the Internet and the interaction models are
heavily based on remote messaging, they cannot be applied directly to some ap-
plications in pervasive networks, due to the relative narrowness and instability
of network connections. For example, the composition of multimedia informa-
tion service shown in Section 2.1 becomes inadequate in pervasive networks with
limited communication resources, since this requires exchange of the multimedia
data itself between distributed services. This problem is significant especially
when temporary environments without sufficient resources are considered.

2 This selection is done by associating service bindings to a process instance, or speci-
fying a process that finds adequate service providers with directroy services by itself.



41

In the remainder of this paper, we consider adoption of the mobile agent
technology in response to this problem. Note that we limit our discussion in this
paper to this problem. We are not concerned with another problem of dynamic
discovery and selection of (possibly temporary) available services, assuming some
mechanisms are available such as directory services and multicast protocols.

2.3 Adoption of Mobile Agents

A mobile agent is a software component that has the ability to move from one
host to another while preserving its state[4,5]. It has been utilized especially
for information retrieval applications and mobile computing, with its migration
ability facilitating the following typical behaviors.

Local Access A mobile agent can migrate to the host where the service stays so
that it enables fast local interaction with the service, at the cost of migration
overhead. In addition, it can reduce network traffic in information retrieval
applications, by carrying on the analysis/search method to the service host
and bringing (or sending) back only the necessary result.

Work Away from the User’s Device A mobile agent can select hosts on
which it achieves tasks so that it can interact with the user on his device and
achieve other tasks on other more stable hosts. This decreases the depen-
dence on an unstable connection of the moving user’s device while maintain-
ing fast responses during interactions with the user. Moreover, the user only
have to connect when needed, e.g. when launching and receiving agents.

Existing mobile agent systems also support cloning as well as migration[7, 8].
Cloning complements migration behaviors with additional abilities, for example,
concurrent local access to multiple services and reduction in migration cost by
dispatching a clone with only necessary data.

To realize Web Services integration by mobile agents, it is necessary to add
descriptions of these physical behaviors to the integration logic. It is important
to facilitate change of physical behaviors without modification of the integration
logic, in order to adapt to changes in the environments. Taking this require-
ment into consideration, we propose a mobile agent system for Web Services
integration, where the descriptions of integration logic and physical behaviors
are separated. Our system aims to:

— Utilize the standard language, BPEL, to describe integration logic.
— Readily introduce typical physical behaviors to an integration process using
simple rule descriptions.

Our discussion in this paper thus targets how to describe the behaviors of a
mobile agent that integrates services.

3 Mobile Agent System for Web Services Integration

In this section, we present our mobile agent system for Web Services integration,
taking particular note of the descriptions of the agents’ behaviors.



42

3.1 System Model

Figure 2 shows our model for integration by mobile agents. In this system, a
mobile agent that achieves Web Services integration is defined with three parts
of descriptions: (1) a BPEL process description expresses the integration
logic and is interpreted by the agent, (2) behavior rule descriptions decide
the physical behaviors of the agent, and (3) packed services are carried by the
agent and invoked locally in the BPEL process. The provider of an composed
service registers these to a platform that supports execution of agents.

BPEL Process Behavior Rule Descriptions

Integration Services
Packed in Java
V

e, »
e, ‘I‘/h Mobile Agent
auncl
Mobile Integration Agenl P|aﬂ0fm
»
.
oy

Host
Mlgramn / Clone Dispatch
and
Local Access Remole Access

Web Service { Web Service

> 4 »J
Mobl\e Agenl Mobile Agent
Pladorm Platform
‘ Host Host

Fig. 2. Web Services Integration by Mobile Agents

The combination of a BPEL process and behavior rule descriptions decides
the behaviors of the agent. Behavior rule descriptions are explained in more detail
later in this section. Packed services are invoked in the same way as external
services, but the agent dynamically deploys them on the host where it stays. We
currently limit this to only Java classes referred by WSDL Java Extension. This
functionality to carry services is necessary, for example, in order to achieve local
access and analysis/search as mentioned in Section 2.3.

Note that this paper does not cover how to select partners from available
service providers and assumes that ordered lists for available service providers
are supplied when the agent is instantiated.

3.2 Overview of Behavior Rule Descriptions

In our behavior rule descriptions, each rule associates a physical behavior, i.e.
migration or cloning, to an execution block, that is, a set of activities to be exe-
cuted in succession. An execution block consists of any form of: (1) an activity,
(2) activities that are nested directly in a sequence activity and are to be exe-
cuted successively (subsequence), or (3) activities that are nested directly in a
flow activity and make a connected graph starting from one activity (subflow).3

3 This definition comes from the fact that only sequence and flow activities can nest
multiple activities directly.



43

In all cases there is one activity that is to be executed first in the block and we
call this the start activity of the block. We allow a block to nest in another block
recursively but not to cross the boundary of another block.

Here we explain two types of primitive rules with the example rules in Fig.
3. These rules are associated with the example BPEL process in Fig. 1.

Migration A migrate rule indicates that the agent migrates to a certain host
and executes the block on the host if the migration is successful, excluding
other possible occurrences of migration associated with concurrent blocks.
The purpose of associating an execution block to a host, instead of indicating
a point where migration occurs, is to assure realization of successive local
interactions, e.g. local access and analysis/search mentioned in Section 2.3.
Conflicting migration of concurrent blocks are detected before execution.
The migrate rule in the figure indicates that the agent migrates to the host
where the information service stays (the keyword local) and on the host
it invokes the service (”invokeShopl”) and the carried service for analysis
("analyzeShop1”). If it fails to migrate, it continues the trial until timeout
(the retry element). These options are described again later in this section.

Cloning A clone rule indicates that the agent creates a new clone agent and
allocates the execution block to it. Since BPEL is capable of describing
concurrency control with flow activities such as join conditions, our clone
rule only describes which activities are to be executed by the created clone.
The clone rule in the figure indicates that the agent creates its clone and
makes it access another information service locally as indicated by the nested
migrate rule.

<migrate block="invokeShopl analyzeShopl">
<target> <local /> </target>
<retry time="30" />

</migrate>

<clone block="invokeShop2 analyzeShop2">
<migrate block="invokeShop2 analyzeShop2">
<target> <local /> </target>
</migrate>
</clone>

Fig. 3. Example of Behavior Rule Description

Interpretation of the combined BPEL process and behavior rule descriptions
is done in almost the same way as the interpretation of a standard BPEL process.
The difference is that the controls of physical behaviors, such as migration ac-
tions and data exchange between agents, are inserted according to the behavior
rule descriptions, before and after execution of each activity. We are presently
investigating the formal definition of these behaviors. In our system, an agent
is an entity that is responsible for execution of a certain set of activities in the
BPEL process. Intuitively, migration changes the host which the agent belongs



44

to and cloning changes the agent which the activities in the execution block
belong to. These behaviors preserves the original semantic of BPEL, in terms of
control and data flow between activities and actions associated to each activity.

3.3 Options for Migration Controls

Here, we briefly describe some options for migration controls to facilitate realiz-
ing typical behaviors.

First of all, it is necessary to specify how to decide the target host of migra-
tion. Apart from specifying a host address directly, our system supports various
options for this. We show some characteristic ones below.

Ordered list of hosts The agent tries to migrate to hosts in the list one by
one until it succeeds or it fails all.

local keyword The agent migrates to the host where the service invoked in the
start activity stays. This allows programmers to realize local interactions
easily without being concerned about which service providers are actually
chosen possibly in runtime. This requires addressing support of platforms,
as we will discuss in the next section.

Reference to an allocation service The agent utilizes a provided allocation
service that returns a list of available hosts according to the environmental
conditions.

Secondly, it is necessary to handle migration failure as we are taking unstable
wireless connections into consideration. As shown in the example in Section 3.2,
behavior rule descriptions enable agents to continue the trial until timeout. In
addition, specifying a list of target hosts, as mentioned above, indicates migra-
tion retry changing the target host, and specifying a change keyword indicates
migration retry for local access by changing the service provider to interact with
according to the given list of available providers. When the agent still fails to
migrate after such retries it accesses services remotely as a stationary BPEL en-
gine by default. However, in cases where migration is very important, for example
when exchanging enormous amounts of data, the agent may give up execution of
the block, throwing an associated fault. Behavior rule descriptions also facilitate
such association of migration failure to fault throwing in the BPEL process.

4 Implementation

In this section, we show the current implementation status and discuss some
implementation issues particular to our system.

4.1 Current Status and Issues

We implemented a prototype system using the Bee-gent framework[7] and ex-
amined the effectiveness of mobility in Web Services integration through several
experiments. In this paper we don’t present these experiments as space is limited



45

and the experiments are basic and traditional ones for evaluation of the mobile
agent paradigm.
Here, we briefly discuss some implementation issues particular to our system.

Realization of Local Access As mentioned in Section 3.3, to allow program-
mers to realize local access to a service selected in runtime, the system should
support addressing of a platform that is on the same host as the service. Such
information should be embedded as part of the metadata of the service. In
the current implementation, directory services manage this information.

Data Exchange between Clones In our system, a clone is an agent that is
created to execute a set of activities according to a clone rule. To realize
such task assignment, it is necessary to send required data from one agent to
another. Although data dependency between activities can be easily obtained
from the BPEL process, each agent must know which agent is to execute the
activity that requires the agent’s data. The current implementation analyzes
the BPEL process and behavior rules, and prepares in advance a table that
associates an activity to the agent responsible for execution of the activity.

Minimization of Clones In Section 2.3 we mentioned reduction in migration
cost by cloning. This can be achieved by analyzing the BPEL process and
dispatching a clone with only the necessary data.

We are presently investigating more sophisticated implementation addressing
these issues. This implementation is based on the Web Services technologies,
intended to achieve the maximum platform-independence and interoperability.

5 Consideration

In this section we present several considerations about our system.

5.1 Effectiveness of Mobile Agents in Web Services Integration

Generally, the mobile agent paradigm enables various types of access to resources
by combining (1) migration between hosts, (2) parallel execution by cloning, and
(3) remote communication, as mentioned in Section 2.3. Thus, it is considered
to be a general framework for modeling and implementation in distributed envi-
ronments([4, 5]. It has been utilized for adaptation to various environments with
resource constraints[9, 10], though we only mentioned the problem of wireless
connections in this paper. The mobile agent paradigm will surely provide Web
Services with a powerful way to adapt to various environmental conditions.

However, the effectiveness of a certain physical behavior, e.g. local access
to an information service mentioned in Section 2.3, depends on the various pa-
rameters in the environment: exchanged data amount, network bandwidth and
stability, computing resources, number of clients accessing the service simulta-
neously, and so on[11,12]. Our future work is to conduct further experiments
and evaluation in order to explore effectiveness of complex behaviors in vari-
ous situations. This will help us provide both description guidelines and further
high-level rule descriptions of complex behaviors.



46

5.2 Behavior Descriptions of Mobile Agents

In typical mobile agent systems, programmers describe both application logic
and physical behaviors together in procedural languages such as Java[8]. This
leads to very complex codes and makes it difficult to change only physical be-
haviors according to changes in the environments.

In our system, the BPEL process description as integration logic and the
behavior rule descriptions for physical behaviors are separated, which is our
original objective. It is easy to see what the actual tasks for integration are and
to change only the physical behaviors in order to test which behaviors are the
most suitable for the environment or to adapt to changes of the environment.
The separation also enables step-by-step development styles: first develop and
test only a BPEL process (or use an existing one), then add and test physical
behaviors according to the environment. Moreover, in our behavior rule descrip-
tions, it is not necessary to specify additional controls explicitly, such as remote
communication between agents, as they are performed according to the control
and data flow described in BPEL.

5.3 Related Work

Much research has been conducted on services integration (not limited to XML
Web Services), some of which utilize mobile agents. However, none of them com-
bine the mobile agent technology with standards for Web Services integration
such as BPEL. From the point of view of mobility utilization, some approaches
adopt simple migration models such as “always local access”[13], which may be
inefficient in some situations. Many other approaches adopt migration models
based on estimation and optimization of costs with dynamic resource manage-
ments(9, 10, 14] (including so-called “grid” approaches). Our work is intended to
facilitate selection and combination of such various models of physical behaviors,
for example, specifying target hosts of migration statically in some domains and
utilizing provided allocation services with their own allocation policies in oth-
ers. It is notable that in [10, 14], mobile agents provide “mobile services”, rather
than utilize other services as we have considered in this paper. It seems very
interesting to utilize our system to implement such mobile services, as a BPEL
process is both a service consumer and a service provider.

On the other hand, the need for separation of application logic and mobility
has been investigated in several studies. In [15], mobility is described as declara-
tive, event-driven policies. Although our current rules are very limited and don’t
handle event-based migration, the features of our system are that (1) it targets
Web Services, composing a mobile agent with exchangeable services to carry
and providing dedicated descriptions such as local, and (2) it also enables simple
control of cloning.

6 Conclusion

Our study proposes a mobile agent system for Web Services integration, where
physical behaviors of mobile agents, i.e. migration and cloning, are separated



47

from a BPEL integration process and described as simple rules. We are presently
investigating the formal definition of behavior descriptions. This research is to
ensure that our framework preserves the original semantic of BPEL and to fa-
cilitate tool support and validation. Starting with our work in this paper, our
objective is to facilitate flexible behaviors of mobile agents in Web Service ap-
plications, to adapt to various environments such as pervasive networks.

References

10.

11.

12.

13.

14.

15.

Web services. http://www.w3.org/2002/ws/.

Satish Thatte et al. Business process execution language for web services, ver-
sion 1.1. http://www-106.ibm.com/developerworks/webservices/library /ws-bpel/,
2003.

alphaworks : Web services tool kit for mobile devices.
http://www.alphaworks.ibm.com/tech/wstkmd, 2002.

David Kotz and Robert S. Gray. Mobile agents and the future of the internet.
Operating Systems Review, 33(3):7-13, 1999.

Deja Milojicic. Mobile agent applications. IEEE Concurrency, 7(3):7-13, 1999.
Web service description language (WSDL) 1.1. http://www.w3.org/TR/wsdl,
2001.

Bee-gent multi agent framework. http://www2.toshiba.co.jp/beegent/.

Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono. Aglets specification.
http://www.trl.ibm.com/aglets/specll.htm, 1998.

Munehiro Fukuda, Yuichiro Tanaka, Naoya Suzuki, Lubomir F. Bic, and Shinya
Kobayashi. A mobile-agent-based pc grid. In Autonomic Computing Workshop 5th
Annual International Workshop on Active Middleware Services (AMS’03), 2003.
C. Ragusa, A. Liotta, and G. Pavlou. Dynamic resource management for mobile
services. In The 5th International Workshop on Mobile Agents for Telecommumni-
cation Applications (MATA’03), 2003.

L. Ismail and D. Hagimont. A performance evaluation of the mobile agent
paradigm. In the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 306-313, 1999.

Robert S. Gray et al. Mobile-agent versus client/server performance: Scalability
in an information-retrieval task. In The 5th International Conference on Mobile
Agents(MA2001), pages 229243, 2001.

Amir Padovitz, Shonali Krishnaswamy, and Seng Wai Loke. Toward efficient and
smart selection of web service. In AAMAS’2008 Workshop on Web Services and
Agent-based Engineering, 2003.

Zakaria Maamar, Quan Z. Sheng, and Boualem Benatallah. On composite web
services provisioning in an environment of fixed and mobile computing resources.
Information Technology and Management, , Kulwar Academic Publishers,, 5(3),
2004.

R. Montanari and G. Tonti. A policy-based infrastructure for the dynamic con-
trol of agent mobility. In 3rd International Workshop on Policies for Distributed
Systems and Networks(POLICY’02), pages 206—209, 2002.



