

Filtering spam at e-mail server level with improved
CRM114

Víctor Méndez, Julio Cesar Hernandez, Jesus Carretero, Felix García

Department of Computer Science
Universidad Carlos III de Madrid

Abstract. Security managers and network engineers are increasingly required
to implant corporative spam-filtering services. End-users don't want to interact
with spam-classify applications, so network engineers usually have to
implement and manage the spam-filtering system at the e-mail server. Due to
the processing speeds needed to put these solutions into work at the server
level, the options at hand are reduced to applications of the black-list/white-list
type. This is the reason behind the fact that most applications based on AI
techniques run only on the client side, particularly those based in the Naïve
Bayes scheme, which has proved to be one of the most successful approaches to
fight against spam, but nowadays is not as fast as other techniques and still not
able to process the high amount of email traffic expected at a mail server.
However, spam mutates and the spamies techniques have quickly evolved to
easily pass the traditional black/white list applications, so there is a compelling
need for the use of more advanced techniques at the server level, notably those
based in the Naïve Bayes algorithm. This article explores this possibility and
concludes that, simple improvements to a well-known Naïve-Bayes technique
(CRM114[2]), following some ideas suggested in [8], could turn this algorithm
into a much faster and significantly better one that, due to these improvements
in speed, could be used at the server level.

1 Introduction

The problem of automatically filtering unwanted email messages is one of increasing
importance, since bulk emailers take advantage of the great popularity of the
electronic mail communication channel for indiscriminately flooding email accounts
with unwanted advertisements. There are many factors which contribute to the
proliferation of unsolicited spam, specially the inexpensive cost of sending email[14],
and of obtaining pseudonyms[15]. On the other hand, we have the high cost
associated with users receiving spam[2] and the network overflow.

The spam filtering problem can be seen as a particularly instance of a Text
Categorization problem where the classes are Spam or Ham. In recent years, a vast

Méndez V., Cesar Hernandez J., Carretero J. and García F. (2004).
Filtering spam at e-mail server level with improved CRM114.
In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 207-216
DOI: 10.5220/0002674702070216
Copyright c© SciTePress

amount of techniques have been applied to solve this problem. Some of the top-
performing methods are Learning Rules that Classify e-mail[20](1996) based in the
RIPPER algorithm, Ensembles of Decision Trees[16](1999), Support Vector
Machines[17](1998), Boosting[18](2000), and Instance Based Learning[19](2000).
Nowadays, advanced Naive Bayes methods are the top-performing ones, coming from
Paul Graham principles for spam-classifying [3], and some basic improvements
[4](2003). The false positives go from 0,3% to 0,06%, and the detected spam from
99,5% to 99,75%[4].

On this paper we are going to explain principles that makes CRM114 one of the best
accuracy filtering application. We after compare the design features and obtained
results with other state-of-the-art applications, and expose our approach to the
problem modifying CRM114 behavior on window size for empirically comparing
accuracy versus speed, and on features text extraction, introducing the concept of
virtual feature, that will finally modify the original SBPH polinomy used on
CRM114. We present two experiments results and we extract some conclusions.

2 Sparse Binary Polynomial Hashing (SBPH) CRM114

SBPH creates a lot of distinctive features from an incoming text, then the Naive
Bayes technique is applied to this features instead of directly to the words. For this
purpose the algorithm slides a window of length five words over the incoming text
and, for each window state, generates a set of order-preserving sub-phrases containing
combinations of these words. These order-preserved sub-phrases are processed
calculating 32-bit hashes, and with all the resulting sub-phrases the algorithm creates
a 32-bit superhash (i.e. hashing of hashes) value that will be used to calculate the
Naive Bayes probabilities. Essentially, each sub-phrase tries to extract a word feature
from the text. With a window size of five words, each word affects 25-1=16 features.

The performance of CRM114 Mailfilter from Nov 1 to Dec 1, 2002: 0.068% of false
negatives and ZERO false positives[2]. Its filtering speed on classification is less
than 20Kbytes per second (on a Transmeta 666 MHz) [2], which obviously hinders
the use of crm114 for filtering at the mail-server. For this purpose, an average
network needs a classification speed of at least 60kb/sg [13].

3 CRM-114 and other state of the art filtering applications

Every application has distinctive characteristics that we summarize on the next
diagram, where we show the features for some state of the art antispam applications.

207

Table 1.

 1 2 3 4 5 6 7 False
positives

Crm114 [2] Yes 5 S Yes GPL M, S (?) crm 0.00% [2]
SpamAssesine [6] Yes Unknown A Yes No M, I Unknown 0.19% [6]
Gnus-emacs [7] Unknown No N No GPL M(+IMAP) gnus Unknown
SpamProbe [8] Yes 1,2 S Yes QPL P(+fetchmail) No 0.035% [8]
PopFile [9] Yes Unknown A Yes GPL M, P. PERL 0.125% [10]

1.Automatic featured extractor from text
2.Phrase window size.
3.HTML filter: No HTML filter (N), Simple HTML filter (S), Advanced HTML filter process (A)
4.Specific design to arise with false-positives.
5.Software license.
6.Filtering level at the: MTA Client (M), POP3 Proxy (P), At the e-mail server (S) Internet level [6](I).
7.Generic filter language [2].

All the applications are based on the naive-bayes algorithm, except SpamAssassin,
which is based on a combination of a GA and rules, which is probably the reason of
the worse false positives rate. The false positives rates are taken after different learn
cycles, depending on the application approach to the optimum value. We can see this
data as a kind of "how good can it do it". The classifying experiments were made with
a different number of mails; every author has used different sets, but always in the
order of thousands. It is clear from the table above that crm114 has the better false
positive rate.

Automatic featured extractor for text is very important for the detection of new
spamies techniques [5], which simplify the network engineer task of coping with new
tactics. It is also known that both crm114 and SpamProbe use a similar windowed
word philosophy, which will be explained below.

All the applications except gnus-emacs use some type of HTML processing. This is
becoming important due to the fact that a lot of spamies techniques are based on
HTML use [9]. We can also see that gnus-emacs has not implicit design to manage
false positives.

Additionally, some kind of free software license is needed to give the network
engineer the possibility of escalating or updating the code, or for tuning in a
production domain without the strategic dependency on a specific software developer.
If not a completely open code license, at least a specific generic filter language that
allows for some level of implementation-specific tuning should be offered. This is
especially important on spam-classify applications because they generally don't have
good generalization features but are able to successfully operate in a real world
domain after only small design changes. From our point of view, the main drawback
of SpamAssassin for our purpose is that it has not free software license or an open
generic filter language, so it works outsourcing the spam-filter at internet level, a
solution that is not appropriate for a corporative implementation at the server level.
On the other hand, crm114 could filter at both the MTA Client level and also at the

208

server level, but only if we could greatly increase its classification speed. The rest of
applications could run only on the client side.

4 The window philosophy

The crm114 algorithm uses a window size of five words. Most researches like Brian
Burton [8] indicate that window sizes over two words generally produce no better
accuracy or false positives rates, and in fact may well be worse because they could
lead to an overflow of features and, additionally, they greatly decrease the filtering
speed. It is obvious that crm114, which is a combination of an advanced Naive Bayes
method and polynomial hashing, has a very different window philosophy: bigger
windows gives polynomial techniques a more relevant weight in the final combined
method. If we set the window size to two words, we will use a two variables
polinomy that is less suitable than a bigger polinomy for feature extraction. The first
consideration we have to do is that following the crm114 principles for relationship
between window size and features, for a two words windows size we may extract only
2 features, and this sounded a little too poor. So at the end of the day, we think in
trying different empirical experiments playing with both window size and word
features. For this purpose we converted the static crm114 compiler into a dynamic
matrix of pipelines (window size) and superhashes phrases (number of words
features) to help on false positives service level and classify rate decisions.

5 The virtual features

How are we going to extract different number of features than SBHP features
relationship with the window size, in order of 2N-1 ? We are not going to follow such
relationship, for example with 2 words window size we repeat original SBHP
coefficients patterns, 22-1 = 2 patterns until 20, and we call them virtual features.
Depending on the conjunction of window size and virtual features, we will obtain
diferents SBHP functions, taken as algorithmical seed the original Yerazunis function
with 5 x 16 dimension.

6 Test I

6.1 Benchmark corpus

Our benchmark corpus contains the learning mails set to create the .css files,
(superhashes mapped files). Yerazunis recommends a learning corpus around 0,5 Mb
size, and following his recommendation we have used the file nonspamtext.txt
(695111 bytes extracted from my personal inbox and public mail lists asfsdevel, SI-
edu, or SL-admin) and the file spamtext.txt (536547 bytes from a public set [11]).

209

The classify mails set to test our approach come from individuals donations [12], thus
the learn/classify sources are independent enough to generalize results at the mail
server filter level. Following Paul Graham indications, they approximately have the
same ham/spam distribution (ham=170, spam=220)

6.2 Results

The tests show the result for single-pass learning, without any retraining cycle, so
results do not shown a "how good can it do it", but are enough for comparison
between different matrix sizes. The test were done on an 700Mhz. Intel Pentium III
Copermine (c) with 128Mb memory, and a processor load over 99% for the classify
process. The times are taken strictly on classify process part. The matrix size are
relative to pipelines(window size) x superhashes phrases.

Table 2.

 5x12 3x8 3x5 2x8 2x4 2x2
Spam detected 87,61% 88,53% 94,95% 92,20% 92,66% 95,87%
False positive 26,19% 13,69% 17,26% 9,52% 10,71% 17,86%
sg. training spam 496,67 376,86 374,05 373,34 373,6 374,98
Sg training ham 36,91 27,99 26,37 25,82 26,27 25,75
Training rate kb/sg 2,25 2,97 3 3,01 3,01 3
Classify spam 50,48 24,33 24,32 24,32 24,52 24,41
Classify ham 62,61 31,25 30,81 31,7 31,01 30,87
Classify rate kb/sg 21,27 43,28 43,64 42,95 43,32 43,53

Fig. 1.

5x16 3x8 3x5 2x8 2x4 2x2
5

10

15

20

25

30

35

40

45

Positive falses Vs. Classify rate

False positive (%) Clasify rate (kb/sg)

210

The graph above show the values for the critical parameters. This confirms worse
false positive rates if the window size is over two words. Remember the original static
crm114 matrix size is 5x16, so crm114 has similar behavior on the window size value
to the Brian Burton study for the SpamProbe[8], which obtains betters results on 1
and 2 words window sizes. We also obtain much better classify speed rates but this
was an obvious result because, for example, the original crm114 has to calculate
5x16=80 hash for a superhash feature, and, at the best false positive performance only
2x8=16 hash are to be computed for a superhash feature.

6.3 Test I Conclusions

We have proposed a new approach for implementing spam filtering on the email
server which is a modification and also an improvement over the state-of-the-art
crm114 technique and leads to much higher speeds, due to the fact that it uses a
window word size of only two words and, surprisingly enough, also to better
classification and false positive rates.

7 Test II

Now we would like see how our approach works with a bigger test corpus, in order of
thousands mails from SpamAssasine public corpus[21]. We also play with relearning
cycles, following our aim of ZERO false positives, that original crm114 may
accurate[2], and checking if our conclusions for a one cycle of Test I are also valid in
a real domain making maps proccess. For this purpose we first train up to medium
size corpus, we after relearn every false classificated case up to final corpus size, with
bigger ham corpus than spam one, trying to force more ham weight on maps, for
better results on false positives. We finally test from a different corpus for statatistics.
We will combine in a natural way the .css maps and the test corpus, for example easy
ham map and spam map, testing with easy ham and spam corpus(EASY-EASY); and
we also check the cross map-corpus tests, for example easy maps with hard test
corpus, that are not expected to get good results, but we want to check it.

7.1 Benchmark corpus II

We focus our study on 2 words window size and original crn114 5x16 matrix for
comparison.
On the first two phases we take mails from 2003 SpamAssasine public corpus, which
has a singular ham sources classification with easy to classify ham, and hard ham that
usually produces a worse false positives rate, so we are going to test with a ham map
done with easy ham, and other with a mix of easy and hard ham on first phase, and
only hard ham on relearn phase, we will call it mix-ham, but is some kind of hard ham
with little enough easy ham. After relearn classifying thousands mails, we obtain
map files of the following corpus size and mails number:

211

Table 3.

 2x2 2x4 2x8 2x12 2x16 5x16
Mail class Bytes Mails Bytes Mails Bytes Mails Bytes Mails Bytes Mails Bytes mails

spam 349107 67 349317 65 331767 60 314745 54 332300 50 308988 67

Easy-ham 508550 62 500116 62 498545 62 500256 62 405325 63 292499 60

mix-ham 414676 48 419989 46 677018 46 673904 44 653895 41 416095 53

Training corpus: Spam Assasin public corpus 2002. Mails:

Spam: 501

Easy ham: 2551

Hard ham: 250

7.2 Test II Results

The test were done on an 700Mhz. Intel Pentium III Copermine (c) with 128Mb
memory, and a processor load over 99% for the classify process. The times are taken
strictly on classify process part. The matrix size are relative to pipelines(window
size) x superhashes phrases.

Fig. 2.

2X2 2X4 2X8 2X12 2X16 2X20 5x16
0

10

20

30

40

50

60

Classifiying speed

RELEARNING
Classifying rate
(kb/sg)

EASY- EASY
Classifying rate
(kb/sg)

MIX- EASY
Classifying rate
(kb/sg)

EASY- HARD
Classifying rate
(kb/sg)

MIX- HARD
Classifying rate
(kb/sg)

212

The classify speed shown on the graph above, confirm similar conclusions than Test
I. The relearning classify rate has better results on original 5x16 matrix, than some of
the two words window size matrix. But this data are not relevant because the critical
classify speed is on production time, not in relearning phase. On the other hand we
can see the testing classify rates, working better with 2 words window size, specially
with 12 and 16 features, and with the bests results on tests that uses hard ham corpus.
We also can see better results on original 5x16 matrix than in the 2x20, so 2x20 will
be out of consideration because speed deficiencies.

For the next graph we have to do the consideration that during relearning phase the
maps are changing, training the maps with every false classificated case of the test. So
the accuracy will also change and the data we shown are taken from the beginning to
the end of relearning phase, for comparison with the test phase accuracy(see below).

Fig. 3.

2X2 2X4 2X8 2X12 2X16 2X20 5x16
0

1

2

3

4

5

6

7

8

9

10

End relearning phase accuracy

RELEARNING False
negatives (%)

RELEARNING Easy
ham false positives
(%)

RELEARNING Mix
ham false positives
(%)

We confirm better results on two words window size, and much better with more
features. We also confirm the easy and hard ham SpamAssasine classification, that
goes for false positives from around 0,5 % value for easy ham, to more than 6% with
hard ham.
Diagram below shown the accuracy for natural tests: one is the spam and easy ham
maps versus spam and easy ham test corpus, the other is spam and mix ham maps
versus spam and hard ham corpus.
We get the ZERO false positives for easy ham case. The best results are in 2x12 and
2x20 but we have to remember that 2x20 has the big problem of speed. The green and
brown lines are the false positives and our previous working thesis of "more weight
on ham maps for better false positives results" obtain here empirical confirmation, if

213

we compare with relearning accuracy, where the maps at beginning were of similar
size. But in the other hand we have very bad results on false negatives. We can clearly
see this dependency in the 2x16, where mix-hard false negatives decrease if we
compare with other matrix size, but false positives increases. The important fact for
our study is that we can diminish false positives playing with learning and relearning
final mails corpus size, but increasing the false negatives. We may tuning for a
agreement solution to obtain also ZERO false positives with not so bad false
negatives.

Fig. 4.

2X2 2X4 2X8 2X12 2X16 2X20 5x16
0

5

10

15

20

25

30

35

40

Natural map- corpus test accuracy

EASY- EASY False
negatives (%)

EASY- EASY False
positives (%)

MIX- HARD False
negatives (%)

MIX- HARD False
positives (%)

The next diagram shown that not natural map-corpus combination are not good to
work.

Fig. 5.

2X2 2X4 2X8 2X12 2X16 2X20 5x16
0

10

20

30

40

50

60

70

Cross map- corpus test accuracy

MIX- EASY False
negatives (%)

MIX- EASY False
positives (%)

EASY- HARD False
negatives (%)

EASY- HARD False
positives (%)

214

Conclusions

After the more reliable Test II, we confirm the conclusions of Test I, our approach has
better accuracy and speed than original 5x16 static matrix size crm114. We also
extract more conclusions, the most important is that the ZERO false positives are
within reach if we use relearning on false cases in a planned way, and we have
proposed a valid tactic in two phases for this aim. An other conclusion is we can give
more important to the market critical parameter "false positives", using bigger ham
corpus size than the spam one, to make the maps (.css); but this decrease the other
false cases, the negative, the spam and ham maps (and they train corpus) are an
antinomy with absolute dependencies one to each other for the final results. We also
observed that a ham subdivision in hard an easy may be good for planing the train and
relearning tactic, we have to considerer that hard ham is not very used, but are those
mails that could be easy mistaken with spam, even for the human eye, so depending
on corporative domain we should specially train the maps for them, or not. Finally we
have shown that not natural map-working domain, are not valid at all.

References

[1] Tom M. Mitchell. Machine Learning - McGraw-Hill, ISBN: 0-07-042807-7
[2] William S. Yerazunis. Sparse Binary Polynomial Hashing and the CRM114 Discriminator -

MER Labs. Cambridge, MA. 2003 and Cambridge Spam Conference Proceeding -
http://crm114.sourceforge.net/

[3] Paul Graham. A Plan for Spam. 2003 Cambridge Spam Conference Proceeding
http://paulgraham.com/spam.html

[4] Paul Graham. Better Bayesian Filtering. 2003 Cambridge Spam Conference Proceeding
http://paulgraham.com/better.html

[5] Jason D.M. Rennie, y Tommie Jaakkola. Automatic Featured Induction for Text
Classification. - MIT, AI Labs. Abstract Book. 2002 and 2003 Spam Conference-
http://www.ai.mit.edu/~jrennie/spamconference/

[6] Matt Sergeant. Internet Level Spam Detection and SpamAssassin 2.50.- 2003 Cambridge
Spam Conference Proceeding - http://axkit.org/docs/presentations/spam/

[7] Teodor Zlatanov. Spam Analisys in Gnus with spam. - 2003 Cambridge Spam Conference
Proceeding - http://lifelogs.com/spam/spam.html

[8] Brian Burton. SpamProbe: Bayesian Spam Filtering Tweaks - 2003 Cambridge Spam
Conference Proceeding - http://spamprobe.sourceforge.net/index.html

[9] John Graham The spammers compendium.- 2003 Cambridge Spam Conference Proceeding
- http://popfile.sourceforge.net

[10] Kristian Eide. Winning the War on spam: Comparison of Bayesian spam filters. 2003.
http://home.dataparty.no/kristian/reviews/bayesian/
[11] Unam public spam set 2002-2003: http://www.seguridad.unam.mx/Servicios/spam/spam/
[12] From call for donations for this specific use, at the Universidad Carlos III de Madrid,

2003.
[13] Personal communication with Juan Carlos Martin, Security and Network Manager of

EspacioIT, which has over 3.000 mail users along different domains and mail servers.
October, 2003

[14] Carreras & Marquez. Boosting Trees for Antispam Email Filtering. 2001 TLAP Research
Center. LSI Department. Universitat Politecnica de Catalunya.

215

http://paulgraham.com/spam.html
http://paulgraham.com/better.html
http://axkit.org/docs/presentations/spam/
http://lifelogs.com/spam/spam.html
http://spamprobe.sourceforge.net/index.html
http://popfile.sourceforge.net/
http://home.dataparty.no/kristian/reviews/bayesian/
http://www.seguridad.unam.mx/Servicios/spam/spam/

[15] L.F. Cranor and B.A. LaMaochia. Spam Comunications of the ACM, 1998.
[16] Sholan M.Weiss and others. Maximizing text-mining performance. - 1999 IEEE

Intelligents Systems.-
[17] Joachims. Text categorization with support vector machine. Proc. 10th Eur. Conf. Machine

Learning. 1998.
[18] R.E. Schapire and Y.Singer. BoosText: boosting based system for categorization Machine

Learning. 2000.
[19] Yang & Liu. A re-examination of text categorization methods. Proc. 22nd ADM SIGIR

Conference 1999.
[20] W.Cohen Learning Rules for Classifying Mail. AAAI Spring Symposium on Machine

Learning in Information Access. 1996.
[21] http://spamassassin.org/publiccorpus/ . - public - corpus AT jmason dot org if you have

questions.

216

