A Dual-Formalism Approach to Checking Consistency of Class and State Diagrams in UML

W. L. Yeung

1 Department of Information Systems, Lingnan University, Hong Kong

Abstract. The B Abstract Machine Notation (AMN) and the notation of Communicating Sequential Processes (CSP) have previously been applied to formalise the UML class and state diagrams, respectively. The paper discusses their integrated use in checking the consistency between the two UML diagrams based on some recent results of research in integrated formal methods. Through a small information system example, the paper illustrates a clear-cut separation of concerns in employing the two formal methods. Of particular interest is the treatment of recursive calls within a single class of objects.

1 Introduction

The Unified Modeling Language (UML) [13] has emerged as an industrial standard for documenting requirements, specifications, designs, and implementations of information systems. UML supports not only the fundamental object-oriented concepts including objects, classes, methods, and inheritance, but also several contemporary approaches to information systems development: use case and interaction diagrams have their origins in the scenario-based approach [8]; state diagrams are closely related to Harel’s statecharts [6] for reactive systems; class diagrams are based on the entity-relationship approach. While the integration of different approaches is still very much a subject of on-going research, the syntax and semantics of UML have also attracted a great deal of attention and debate. The meta-model of UML specifies rules on the composition of each kind of diagram as well as correspondences among diagrams of different kinds. Engels et al. [4] refer to these as well-formedness rules. Given a set of well-formed UML diagrams about the same software, there are various ways to validate their meanings individually as well as collectively. For instance, state and interaction diagrams can be validated by animation [9].

An important way of validation involves checking logical consistency: given two UML diagrams of different kinds, any logical statements asserted in one diagram must not be contradicted by the other diagram, and vice versa. For instance, if a class diagram says a book cannot be on loan and reserved by the same person at the same time, the behaviour of a person must not be said to the contrary in a state diagram. While such kind of analysis is facilitated by the intuitiveness of UML diagrams to a certain extent, it can be much more rigorously carried out with the help of formal logic provided that we can put the meanings of these diagrams in a formal theoretical setting. This would involve formalising the semantics of UML.
Various ways of formalising different parts (subsets) of UML have been proposed. In most cases, a single formalism is employed for capturing the semantics of UML. However, different kinds of UML diagram involve disparate sets of concepts and meanings that can be more naturally and conveniently expressed in different formalisms. For example, a process algebra such as Communicating Sequential Processes (CSP) [7] or LOTOS, is arguably more suitable than a state-based formalism, such as the B Abstract Machine Notation (AMN) [1] or the Z Notation, for formalising the meaning of a UML behavioural diagram (e.g. a state diagram). On the other hand, B and Z are more convenient for capturing the meaning of a UML class diagram.

Integrated formal methods are currently an active research area. In particular, there has been much interest in integrating state-based and event-based (behavioural) formal methods [3]. This paper discusses the application of some recent results of research in integrated formal methods by Treharne and Schneider [18, 15] for checking the logical consistency between class and state diagrams. While CSP and B have separately been applied for similar purposes, their integrated application discussed in this paper is novel. Furthermore, previous attempts (e.g. [12, 11]) to capture the UML behavioural semantics in B did not handle recursive calls within a class. Tenzer and Stevens [17] proposed the modelling of objects that receive recursive calls as recursive state machines but did not address the consistency between the class and state models. The integrated use of CSP and B here allows us to tackle recursive calls within a class in a natural manner.

The next section defines the consistency problem addressed in this paper with a motivating example. Section 3 briefly describes the application of the B AMN to formalising the class model. Section 4 illustrates the use of a single CSP control-loop process to describe the state-machine behaviour of a system of interacting objects. Section 5 highlights the role of abstract machine operations in relating state-machine behaviour to class structure. Section 6 outlines the application of Treharne and Schneider’s formal technique for checking the consistency between state-machine behaviour and class structure. Section 7 gives the conclusion and identifies some further work.

![Fig. 1. A class diagram](image)

2 A Motivating Example

As a motivating example, let us consider a small information system that handles travel bookings. There are two classes of objects, namely, Flight and Car Hire. Figure 1 shows a UML class diagram for the system. A passenger’s itinerary may consist of several connecting flights and the system maintains one booking for each flight in such an
itinerary; hence, there is the “connect” association among flight bookings. The system also maintains car hire bookings for flight passengers hiring cars at their destination airports. Since a passenger may “fly” and then “drive” away from the destination airport in the same itinerary, there is a “flydrive” association between the two classes. Note that a flight booking can be associated with either another flight (in a connect association) or a car hire (in a flydrive association) but not both at the same time.

![State diagram for Flight Booking objects](image)

Fig. 2. A state diagram for Flight Booking objects

We can determine the functionality of a system by considering how the system is to be used, i.e., use cases of the system. Each use case may be elaborated by one or more scenarios of interaction between the actor(s) and the system’s objects as well as interaction among the objects. Actors and objects interact by sending call messages to each other. The actual receipt of a (operation) call message by an object is termed a “call event” and the desired sequences of call events happening to an object can be modelled by a state machine and represented by a state diagram in UML. Figure 2 shows a state diagram for individual Flight objects.

If the state machine of an object involves any actions that affect the object’s associations with other objects, it needs to be checked against the class structure; if it also involve transitions that are conditional upon the machine-states of other objects of the same class, then the combined state-machine behaviour of the whole class of objects should be checked against the class structure. More generally, since objects of different classes may interact by sending call messages to each other, the combined behaviour of the classes of objects involved need to be checked against the class structure.

3 Class Structuring in B

The B-Method is a formal method for developing software based on a single uniform notation known as Abstract Machine Notation (AMN) [1, 14]. Using the B-Method, a system is modelled as an abstract machine consisting of some state variables and some operations on the state variables. Following Lano [10], a class of objects can be modelled as a single abstract machine that carries a set with elements identifying the (currently) existing objects and a number of functions corresponding to the class attributes. The following abstract machines model the Flight and Car Hire classes as shown in Figure 1:
The “connect” association is represented by a partial injective function next from the flight set to itself, i.e., a flight can be a connecting flight of at most one another flight and not every flight has a connecting flight. We have further stipulated that a flight cannot be a connecting flight of itself directly or indirectly via some intermediate connecting flight(s), i.e., next + \cap id(flight) = 0, which cannot be expressed in the UML class diagram. Note that next + is the non-reflexive transitive closure of next. The “flydrive” association is represented by another partial injective function car. The operations of the above abstract machines will be considered in Section 5.

4 Behavioural Modelling in CSP

A UML state diagram describes the state-machine behaviour of an object in terms of states, events, and transitions, as well as any actions that accompany the transitions. We may extract from a state diagram the desired sequences of call events happening to an object and describe them by a CSP process. For the discussion in this paper, we ignore other kinds of events such as change events and we use the following simplified syntax of CSP (for the time being):

\[
P ::= a \rightarrow P \mid c?x(E(x)) \rightarrow P \mid d!v(E(v)) \rightarrow P \mid P_1 \parallel P_2 \mid P_1 \parallel P_2 \mid \bigwedge_{s \in S(p)} P \mid \text{if } b \text{ then } P_1 \text{ else } P_2 \text{ end} \mid S[p]
\]

where \(a\) is a synchronisation event and can be in compound forms such as \(a, i, c\) and \(d\) are communication channels for inputs and outputs, respectively, \(x\) represents input variables, \(v\) represents output values, \(E(x)\) is a predicate on \(x, b\) is a boolean expression, and \(S[p]\) refers to a process expression parameterised by expression \(p\). The process \(a \rightarrow P\) first engages in event \(a\) and then behaves as \(P\). The process \(c?x(E(x)) \rightarrow P\) is prepared to input a value along channel \(c\) into variable \(x\) provided that \(E(x)\) is true and then behaves as \(P\). The process \(d!v(E(v)) \rightarrow P\) is prepared to output any value \(v\) for \(E(v)\) is true along channel \(d\) and then behaves as \(P, P_1 \parallel P_2\) is a process that is prepared to engage in one of the initial events of either \(P_1\) or \(P_2\); once an initial event of \(P_i\) \((i = 1 \text{ or } 2)\) chosen by the environment has happened, it behaves as \(P_i\) afterwards, \(\bigwedge_{s \in S(p)} P\) is a process that may choose to behave as either \(P_1\) or \(P_2\) but the choice is nondeterministic, \(\bigwedge_{s \in S(p)} P\) is the indexed nondeterministic choice in which \(P\) may take any value \(x\) such that \(E(x)\) is true. The if expression makes the choice between \(P_1\) and \(P_2\) depending on the boolean expression \(b\) in the usual way. Finally, \(S[p]\) is a process name with a parameter expression \(p\); we can define a process with the name \(S[p]\) recursively by mentioning its own name \(S[p']\) (where \(p'\) is an expression for the parameter \(p\)) in its definition. The following CSP process describes the desired sequences of events...
happening to a Flight object according to the state diagram in Figure 2:

\[
\begin{align*}
\text{Flight} & \overset{\text{new}}{\rightarrow} \text{Booked} \\
\text{Booked} & \overset{\text{cancel \rightarrow Stop}}{\bowtie} (\text{connect \rightarrow \{Booked \cap Connected\}}) \bowtie (\text{flydrive \rightarrow \{Booked \cap Flydriven\}}) \\
\text{Connected} & \overset{\text{cancel \rightarrow Stop}}{\rightarrow} \\
\text{Flydriven} & \overset{\text{cancel \rightarrow Stop}}{\rightarrow}
\end{align*}
\]

We can model a state machine more precisely in CSP by taking into account any input parameters and actions associated with individual events. Furthermore, we can use a single “control-loop” process to describe the state-machine behaviour of a whole class of objects, provided that we give up any concurrency among them. The following process models the desired sequences of events and actions for the whole system of objects:

\[
\text{SystemSM} \overset{\text{S(0,0,0,0,0,0)}}{\rightarrow}
\]

\[
\begin{align*}
&\text{FLIGHTSET} \neq b \cup c \cup f \cup \phi_f \&
\prod_{i \in \delta \backslash} \text{new}\!li(i \in \delta) \rightarrow S(b \cup \{i\}, c, f, \phi_f, h, \phi_f, \text{where } \delta = \text{FLIGHTSET} - (b \cup c \cup f \cup \phi_f) \\
&\text{connect}(b, c) (i \in b \land x \in \text{FLIGHTSET}) \rightarrow (\text{connect}(b, c, f, \phi_f, h, \phi_f) \cap \text{connect}(b, c, f, \phi_f, h, \phi_f)) \\
&\text{flydrive}(b, c, f, \phi_f, h, \phi_f, y \in \text{CARHIRESET}) \rightarrow (\text{flydrive}(b, c, f, \phi_f, h, \phi_f) \cap \text{flydrive}(b, c, f, \phi_f, h, \phi_f)) \\
&\text{cancel}(b, c, f, \phi_f, h, \phi_f, x \in \text{FLIGHTSET}) \rightarrow (\text{cancel}(b, c, f, \phi_f, h, \phi_f) \cap \text{cancel}(b, c, f, \phi_f, h, \phi_f)) \\
&\text{CarHireSET} \neq h \cup \phi_f \&
\prod_{i \in \epsilon \backslash} \text{new}\!li(i \in \epsilon) \rightarrow S(b, c, f, \phi_f, h \cup \{i\}, \phi_f, \text{where } \epsilon = \text{CARHIRESET} - (h \cup \phi_f) \\
&\text{S'}(b, c, f, \phi_f, h, \phi_f) \overset{\text{cancel}(b, c, f, \phi_f, h, \phi_f)}{\rightarrow}
\prod_{i \in \delta \cup \epsilon \backslash} \text{cancel}(b, c, f, \phi_f, h, \phi_f) \rightarrow
\end{align*}
\]

In order to keep track of the machine-state of each individual object, the SystemSM process carries six sets of object identities: the first four sets \(b, c, f, \) and \(\phi_f \) correspond to the Booked, Connected, Flydriven, and Final (\(\bigcirc \)) states of Flight objects, respectively; the last two sets are for CarHire objects. The body of SystemSM offers a choice of all call events for the system except the internal cancelc event for CarHire objects. Note that we have used subscripts \(f \) and \(c \) (for Flight and Car Hire, respectively) to resolve the name clashes among parameters and events as in cancelf and cancelc. Recursive cancelf calls for connected Flight objects are handled by \(S'(b, c, f, \phi_f, h, \phi_f) \). On the other hand, cancelling a “flydriven” flight results in a cancelc, which models the sending of a call from the flydriven Flight object to the associated Car Hire object, whose identity is nondeterministic because the control-loop process does not maintain information about associations between the two classes of objects.
5 Abstract Machine Operations

The information for resolving the nondeterministic choices in SystemSM is actually available from the abstract machines defined earlier in Section 3. For instance, the nondeterministic choice following the connect event depends on the validity of the input parameter—x is valid if it identifies an object which is in either the Booked, Connected, or FlyDriven states and connecting flight i and flight x will not lead to circular flight connections. While the machine-state of Flight object x can be determined within the control-loop process itself, information about flight connections can only be obtained from FlightAM through operations such as the following one:

\[\text{reply} \leftarrow \text{connect}(i, s) \]

\[\begin{align*}
\text{PRE} & \quad s \in \text{FLIGHTSET} \land i \in \text{FLIGHTSET} \land x \neq i \\
\text{THEN} & \quad \text{IF} \quad \{ x \mapsto i \} \in \text{next} \quad \text{THEN} \quad \text{reply} \leftarrow \text{yes} \quad \text{ELSE} \quad \text{reply} \leftarrow \text{no} \quad \text{END} \quad \text{END}
\end{align*} \]

On the other hand, whenever a Flight object successfully changes its state from Booked to Connected, the following operation should be executed to update the abstract machine:

\[\text{connect}(f, g) \]

\[\begin{align*}
\text{PRE} & \quad f \in \text{flight} \land g \in \text{flight} \land f \neq g \land g \notin \text{dom(next)} \lor \text{dom(car)} \land \{g \mapsto f\} \notin \text{next} \\
\text{THEN} & \quad \text{next}(f) \leftarrow g
\end{align*} \]

6 Checking Consistency

To check the consistency between a CSP control-loop process and its corresponding abstract machine, we can make use of Treharne and Schneider’s coupling between CSP and B [18, 15]. Here we only illustrate the application of their coupling with our example. For a detailed account of the coupling itself, the reader is referred to [18, 15].

We first need to incorporate the calling of appropriate abstract machine operations into the control-loop process. This requires an extended version of CSP as given in [15] as follows:

\[P ::= a \rightarrow P | \ldots | S(p) | e?v \rightarrow P | e!x \{E(x)\} \rightarrow P | e?v!x \{E(x)\} \rightarrow P \]

The last three additional options of the syntax are used for “calling” abstract machine operations with either input (?) parameters, output (!) parameters, or both, respectively, where e is a communication channel corresponding to an abstract machine operation. Notice that the emphasised symbols “?” and “!” are reserved for abstract machine operation calls. We can now elaborate the control-loop process SystemSM with appropriate abstract machine operation calls as shown partially below:

\[\begin{align*}
\text{SystemSM} & \sim S(0, 0, 0, 0, 0, 0) \\
S(b, c, f, \phi, h, \psi) & \sim \\
\vdots &
\end{align*} \]

\[\begin{align*}
\text{connect}^{(i, x)}(i, x) & \sim \\
\text{if} \quad s \equiv i \lor x \notin \text{b} \lor \text{c} \lor \text{f} \quad \text{then} \quad \text{connect}^{(i, x)} \sim S(b, c, f, \phi, h, \psi) \\
\text{else} & \quad \text{connect}^{(i, x)} \sim S(b, c, f, \phi, h, \psi) \\
\text{if} \quad \text{reply} \equiv \text{yes} \quad \text{then} & \quad \text{connect}^{(i, x)} \sim S(b, c, f, \phi, h, \psi) \\
\text{else} & \quad \text{connect}^{(i, x)} \sim \text{connect}^{(i, x)} \sim S(b, c, f, \phi, h, \psi) \\
\vdots &
\end{align*} \]
Based on Treharne and Schneider’s coupling between B and CSP [18], we can ascertain that SystemSM only calls those abstract machine operations within their preconditions if we can find a control loop invariant (CLI) which holds at each recursive call within the body of SystemSM, ie.:

\[
CLI \land l \Rightarrow [BBODY_{S(b, c, f, \phi_f, h, \phi_n)}]CLI
\]
(1)

\[
CLI \land l \Rightarrow [BBODY_{S'}(b, c, f, \phi_f, h, \phi_n)]CLI
\]
(2)

where \(I\) is the invariant of the abstract machine SystemAM and \(BBODY_S(b, c, f, \phi_f, h, \phi_n)\) and \(BBODY_{S'}(b, c, f, \phi_f, h, \phi_n)\) are the translation of the CSP expressions used in defining the parameterised process \(S(b, c, f, \phi_f, h, \phi_n)\) and \(S'(b, c, f, \phi_f, h, \phi_n, n)\), respectively, into B AMN operations. The notation \([S]\) denotes the weakest precondition for operation \(S\) to achieve \(P\). The translation function \([S(p)] = BBODY_{S(p)}\) is defined inductively based on the extended syntax of CSP. The proof of (1) and (2) can be found in [19].

7 Conclusion and Further Work

This paper has presented an example of applying a pair of integrated formal methods, namely B and CSP, to the checking of consistency between the class model and state model of UML. The integrated approach allows the two formal methods to be applied separately and efficiently, with the help of support tools, to the two UML models: the B-Methods is supported by the B-Toolkit [2] and AtelierB [16] whereas CSP is supported by the FDR model checking tool [5]. Consistency between the two models can simply be established by Treharne and Schneider’s coupling between CSP and B.

A small information system example has been used to illustrate a clear-cut separation of concerns in employing the two formal methods: the machine-states and transitions of individual objects are maintained by a CSP control-loop process, whereas information about their attributes and associations is kept in a B abstract machine. The advantages include clarity and tractability in the formal descriptions. While recursive calls cannot be modelled in B, a recursive CSP process lends itself to the modelling of recursive calls among a class of objects. On the other hand, although the use of a single CSP control-loop process to capture the state-machine behaviour of a system of interacting objects rules out any concurrency among the objects, it does comply with the run-to-completion semantics of the UML state model. The lack of concurrency is also deemed reasonable for data-intensive enterprise information systems such as our example.

Further work is needed to generalise the integrated approach to handle more complex state machines as well as more elaborate class structures involving generalisation and specialisation. These can be achieved by developing more realistic case studies. Support tools for translating state diagrams into CSP are also desirable.

Acknowledgements

This work is supported by a study leave from Lingnan University, Hong Kong. The author would like to thank Helen Treharne, Steve Schneider, and Damien Karkinsky for their discussion and help during his visit at Royal Holloway, University of London.
References