Broadcast Algorithms for Mobile Ad hoc Networks based on Depth-first Traversal

Koushik Sinha¹ * and Pradip K Srimani²

¹ Department of Computer Science, University of Arizona, Tucson, AZ 85721
² Department of Computer Science, Clemson University, Clemson, SC 29634

Abstract. Two deterministic broadcast algorithms are presented for mobile ad hoc networks where the mobile nodes possess collision detection capabilities. The first algorithm, based on a depth-first traversal of the nodes, accomplishes broadcast in $O(n \log n)$ time in the worst case. The second algorithm is mobility resilient even when the topology changes very frequently, with $O(\Delta \cdot n \log n + n \cdot |M|)$ time to broadcast in the worst case, where $|M|$ is the length of the message to be broadcasted and Δ is the maximum node degree.

1 Introduction

The simplest broadcast algorithm in an ad hoc network is round-robin, which works in $O(nD)$ time steps, where n is the total number of nodes in the network and D represents the diameter of the network [2]. There exists a wide range of both deterministic and randomized algorithms in the literature [1]-[8], [10], [11] for broadcast in ad hoc networks. Most of these research works on designing protocols for broadcast in ad hoc networks focus on the scenario where the nodes do not possess collision detection capabilities. With the rapid advances in technology, mobile terminals with collision detection capabilities will soon become common in the near future.

In this paper, we present two deterministic algorithms for broadcast in ad hoc networks based on the collision detection capability of the mobile terminals. Our first algorithm is suitable for networks where topologies change infrequently and it takes $O(n \log n)$ time in the worst case. This algorithm is based on a depth-first traversal of the corresponding graph for the ad hoc network such that collisions are detected and eventually avoided. Compared to the algorithm in [2], the worst-case performance of our proposed algorithm is better for high values of node degree Δ and diameter D. For example, with $n = 1024$, $\Delta = 15$, $h = 3$, and $D = 40$, our algorithm will need 22,528 steps in the worst-case, while that in [2] will always take 2,304,000 steps. We have also simulated our algorithm on randomly generated networks to show that on an average, this algorithm always takes significantly lesser time than the worst-case situation. We then propose a second algorithm which is an extended version of the first so that it works correctly even when the topology changes very frequently. This algorithm needs $O(\Delta \cdot n \log n + n \cdot |M|)$ time in the worst case, $|M|$ being the message length. The higher broadcast time is the price we need to pay to ensure that all nodes receive the

* Address for Correspondence: Koushik Sinha, Department of Computer Science, University of Arizona, Tucson, AZ 85721. Email: koushik@cs.arizona.edu
broadcasted message even in frequently changing networks. We show that the performance of this algorithm is better than that in [2] for short messages and high values of Δ and diameter D.

2 System Model

A radio network is defined as a directed graph with n vertices that represent mobile terminals. Each node is assigned a unique identifier from the set $\{1, 2, \ldots, n\}$. If the exact value of n is not known, then we can apply the technique described in [5] to find an upper bound on the node id within a factor of 2. In the broadcast problem, one node is distinguished as the source node (also termed as the root), which wants to broadcast a message M. We assume that all the nodes in the network are reachable from the source node. By the open neighborhood $N(i)$ of a node i, we would mean all nodes within the communication range of i. $N[i] = N(i) \cup \{i\}$, will be termed as the closed neighborhood of i. Every node has two modes of operation - a receiving mode, in which it can receive message(s) from its neighbor(s) and a transmitting mode, in which the node can transmit a message. There is a single channel over which all the nodes in the system transmit. Time is assumed to be slotted and all transmissions are edge-triggered, that is, they take place at slot boundaries. In a time slot, a station can transmit and/or listen to the channel. We assume that the mobile terminals possess collision detection capabilities. The status of the channel as seen by a node i in a time slot is either of the three possible states:

1. N: indicating null, i.e., if no station in the neighborhood of i, or node i is transmitting in the current time slot.
2. S: indicating single, i.e., if exactly one station in the closed neighborhood of i transmitted at time t.
3. C: indicating collision, i.e., if two or more stations in the closed neighborhood of i transmitted in the current time slot.

3 Protocol Description

A node is said to be eligible if it is yet to transmit M. For a given node i, we say an adjacent node j is privileged if it is an eligible neighbor of i, with the largest id. We say node i is a predecessor of node j if j is the privileged neighbor of node i.

3.1 Functions used

Function $\text{next_max_id}(i)$: This function finds the privileged neighbor of a node i. All node id’s are assumed to be of the same length, consisting of $\lceil \log n \rceil$ bits. Below, we first describe the steps executed by this function.

Step 1: Node i transmits a control message requesting all its eligible neighbors with 1 in the most significant bit (msb) position of their id to respond with an acknowledgement in the next time slot. Three possible cases can arise:
Case 1: No node responds to the request (channel status N), meaning thereby that there are no eligible neighbors of node i with the msb of their id set to 1. So it transmits a message asking all its eligible neighbors with the bits 01 in their msb and (msb - 1)th bit positions respectively, to respond in the next time slot.

Case 2: An acknowledgement is received (channel status S), which implies that there is exactly one eligible neighbor with its msb address bit set to 1. Then in the next time slot, i transmits a message asking only j to begin broadcasting M but all other neighbors to remain silent (no transmission).

Case 3: Node i detects a collision (channel status C), which implies that there are more than one eligible neighbor with the msb of their id set to 1. Then i transmits a message asking all its eligible neighbors with the bits 11 in their msb and (msb - 1)th bit position respectively to respond in the next time slot.

Step 2: Repeat step 1 $d \log n$ times, with the high order address bits set according to the responses received in the previous $k - 1$ iterations of step 1, $(1 \leq k \leq \lceil \log n \rceil)$, and the $(\lceil \log n \rceil - k + 1)^{th}$ address bit (from the msb side) set to 1.

If for $k = \lceil \log n \rceil$, no response (channel status = N) is received with all of previous address bits set to 0, then there is no eligible neighbor of node i, and the function returns control to its predecessor node. Thus, after a maximum of $2 \lceil \log n \rceil$ time slots, node i knows its privileged neighbor, which then begins transmission of M.

Function is_neighbor_present(i): Node i transmits a signal requesting all its eligible neighbors to send an acknowledgement signal in the next time slot. If the status of the channel in the next time slot is S or C, then the function is_neighbor_present returns true, otherwise it returns false.

3.2 Control Signals

transfer_control(i, j): If the numeric value of the $\lceil \log j \rceil$ high order address bits of a neighbor of i is equal to j, then that node becomes the privileged node and receives permission from i to begin broadcasting M through this control signal. Call it node u. All other neighbors are requested to remain silent and node i remains silent too until it receives a signal from u to resume searching for other eligible nodes.

send_completion_signal(j, i): Once node j has determined that it has no more eligible neighbors it sends a signal to node i, indicating to i that it can resume searching for other eligible neighbors of i.

3.3 Algorithm deterministic_broadcast

Algorithm deterministic_broadcast

/* Initiation of broadcasting of message M by root */
var root : integer; /* initiator of the broadcast */
begin
 deterministic_broadcast(0, root, root, M);
 /* The first parameter in the above call to deterministic_broadcast refers to the predecessor of the third parameter */
 /* 0 indicates that the node root has no predecessor */
end.
Procedure deterministic_broadcast\(\text{pred, root, i, M}\)

\begin{verbatim}
var neighbor_present : boolean;
var j : integer;
begin
transmit message M;
neighbor_present = false;
do
if (is_neighbor_present(i) = true) then
begin
/* get the highest id neighbor of i that has not yet transmitted M, i.e., the privileged node */
j ← find_next_max_id(i);
if j > 0 then /* valid node id's are in the range 1 ≤ id ≤ n */
begn
neighbor_present = true;
transfer_control(i, j); /* permission to broadcast is granted to node j */
/* wait until j signals that it has no more eligible neighbors */
wait for a send.completion.signal(j, i) message;
endif;
else neighbor_present = false;
endif;
while (neighbor_present = true);
if (i ≠ root) then /* predecessor of i can resume find_next_max_id function */
send_completion_signal(i, pred);
else end broadcasting. /* all nodes in the network have received M */
end.
\end{verbatim}

The algorithm deterministic_broadcast generates a depth-first-search traversal of the graph, with the generated depth-first-search (DFS) tree rooted at the source node. At every step, the largest id neighbor of the currently privileged node, that is yet to transmit the message \(M\) is selected which then broadcasts \(M\) and in turn, selects its privileged neighbor. The process continues until all nodes in the system get a chance to broadcast \(M\).

Example 1. Consider the graph shown in Fig. 1. Node 0010 initiates the broadcast process by transmitting the message \(M\). The depth-first-search (DFS) tree traversal generated by the deterministic_broadcast algorithm for this graph is shown in Fig. 2. The numbers in bold beside the edges represent the order in which the nodes are processed, and the figures in parentheses indicate the corresponding number of slots needed.

To prove that the proposed protocol is correct, we show that all nodes receive the message \(M\) and the protocol terminates after a finite, deterministic number of steps.

Lemma 1. For any node \(i\), if there exists at least one neighbor of \(i\) that has not yet transmitted \(M\), then during the execution of \(\text{find_next_max_id}(i)\), in at least one of the \([\log n]\) time slots, the channel status will be \(S\).

Proof: Omitted due to brevity. For details, the reader is referred to [12].

Corollary 1. Function \(\text{find_next_max_id}\) will always return the highest id neighbor of node \(i\) that has not yet transmitted \(M\), if there exists any.
Fig. 1. A graph with 10 mobile terminals; Node 0010 wants to broadcast a message

Fig. 2. DFS tree generated from the above graph and rooted at node 0010

Lemma 2. All transmissions of message M by any node in the system, are free of collision.

Proof: Follows directly from Corollary 1.

Lemma 3. The construction of the DFS tree by the algorithm deterministic broadcast requires $2n\lceil \log n \rceil - 2n + 2$ transmission slots.

Proof: Omitted due to brevity. For details, the reader is referred to [12].

Theorem 1. The total number of slots required by the proposed broadcast protocol in the worst case is $2n\lceil \log n \rceil + 2n$.

Proof: Follows directly from Lemma 3 and the additional slots required for the actual transmission of the message and the control signals.

The deterministic broadcast algorithm in [2], which is based on the model of no collision detection capabilities of the nodes, needs $O(D2^h\log^n h)$ time steps, where h is the minimum integer in the range $1 \leq h < \log n$, satisfying the inequality $\Delta \leq 2^{h+1} - 1$. It then follows that our proposed algorithm will require lesser number of steps if roughly, $n < (D\Delta/4) \log^n h - 1$. For example, with $n = 1024$, $\Delta = 15$, $h = 3$, and $D = 40$, our algorithm will need 22,528 steps in the worst-case, while that in [2] will always take 2,30,400 steps. In the next section, our simulation results show that the average-case performance of our algorithm is significantly better than the worst case.
4 Simulation

For the purpose of evaluating the average case performance of our protocol on random topologies, we have used the network graph model in [9] to generate random graphs with a given value of \(n \) and three parameters \(\alpha, \beta \) and \(\gamma \). Larger values of \(\alpha \) result in more geographically spread out networks, smaller values of \(\beta \) result in higher diameter networks, and larger values of \(\gamma \) result in smaller average node degree. For further details, the reader is referred to [12]. The simulation results show that irrespective of the \(\alpha, \beta \) and \(\gamma \) values used to generate the graph, the number of transmission slots required on an average to broadcast a message, is always much lower than \(2n[\log n] \), for graphs of all sizes. A comparison between the required slots in the average case and the worst case situation is depicted in Table 1 for graphs with 200 nodes for different values of \(\alpha, \beta \) and \(\gamma \).

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>Average Case required slots</th>
<th>Worst Case required slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.5</td>
<td>1573</td>
<td>3600</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>2210</td>
<td>3600</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>2505</td>
<td>3600</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>2385</td>
<td>3600</td>
</tr>
</tbody>
</table>

Table 1. Number of transmission slots required for different graphs, consisting of 200 nodes

5 Deterministic Broadcast in Highly Mobile Networks

In this section, we present a modified version of the algorithm \texttt{deterministic_broadca} which will be mobility resilient even when the topology changes very rapidly. The \(O(n) \) algorithm presented by Chlebus et. al. in [4] for deterministic broadcast in symmetric graphs under collision detection model would fail under some typical situation. For example, suppose a node \(u \) was initially at a distance 2 from the source node \(s \) at the start of the broadcast by the algorithm in [4]. Now suppose, all neighbors of \(s \) have correctly received the message and none of them have transmitted the message yet. If at this instance, node \(u \), before it receives the broadcast message correctly from any of neighbors of \(s \), moves, such that it now has \(s \) as its only neighbor, then it will never receive the broadcasted message. Our objective in this section is to develop a deterministic broadcast algorithm that would work even under such movements of the nodes. The algorithm proceeds in four phases as described below.

5.1 Algorithm \texttt{deterministic_broadca}2

\textit{Phase 1:} It consists of \(D \) transmission rounds, each consisting of a single time slot. In round 0, \(s \) transmits a single bit control message, to indicate that it wishes to broadcast a message \(M \). In round \(i \), for \(i > 0 \), all nodes at distance \(i \) from \(s \) retransmit the control
message simultaneously. After D rounds all nodes have either heard a collision or the control message. In either case they prepare for the broadcast.

Phase 2: Each node i that becomes the privileged node, transmits the message M in the first time slot after it becomes active as the privileged node in the network. i then builds its current list of eligible neighbors by repeatedly executing the function find_next_max_id. (Call it the neighbor list of node i. The order of the nodes in the neighbor list will be the order in which the eligible neighbors of node i will transmit.) Node i then transmits the neighbor list and in the subsequent time slot, the first node in the list begins execution of the proc_phase2 procedure as outlined below.

The jth node in the neighbor list of node i will begin executing proc_phase2 if it hears a transfer control signal from i. However, because of the mobility of nodes, a node j in the neighbor list of i may not receive the transfer control signal from i if either i) i is no longer within its transmission range, or ii) i was not within the transmission range of some earlier node u in the neighbor list of i, $1 \leq u < j$. In such a situation, there will be a timeout period of $2\Delta \lceil \log n \rceil + 2n$ time slots, after which phase 3 of our algorithm would initiate in order to take appropriate measures so that all nodes receive the message. For the detailed steps in phase 2, the reader is referred to [12].

Phase 3: It starts after phase 2, which ends when all neighbors of the source node have transmitted or a timeout occurs. s can identify a timeout by two ways: either i) it hears a send completion signal from the last node in its neighbor list, or ii) $2\Delta \lceil \log n \rceil + 2n$ time slots have elapsed since it initiated the broadcast. In round 0 of phase 3, the source node s transmits another control message indicating the end of phase 2. In round i, all nodes at a distance i from the source simultaneously retransmit the control message. After D rounds all nodes in the system will be aware that phase 2 has ended.

Phase 4: It starts in the round following the end of phase 3. In its first time slot, all nodes that are yet to receive M transmit a control message. Suppose u is such a node. Then in the next time slots, all neighbors of u who have the message M execute the following steps:

Suppose (m_1, \ldots, m_r) is the binary representation of the message M. Then the steps are divided into r stages, b_1, b_2, \ldots, b_r, each consisting of two time slots. In each stage, the neighboring nodes of u that have the message M are active and all others are silent. The active nodes transmit the source message according to the scheme described below while the silent nodes act as receivers. The transmission in a stage b_i, for $1 \leq i \leq r$, is as follows: If $m_i = 0$, active nodes act as receivers in the first slot of stage b_i and act as transmitters in the second slot of this stage. If $m_i = 1$, active nodes act as transmitters in the first slot and as receivers in the second slot. When u hears either a S and/or C in one of the two slots of a stage, it knows that the message transmission has ended.

The above steps of phase 4 are executed repeatedly, at most n times, until all nodes have received the message M.

Theorem 2. Algorithm deterministic broadcast2 accomplishes acknowledged radio broadcasting in time $O(\Delta \cdot n \log n + n \cdot |M|)$.
Proof: Phases 1 and 3 each requires D time slots. Phase 2 will end up after a maximum of timeout slots. Phase 4 requires at most $O(n \cdot |M|)$ time. Hence the proof.

Comparing again with the performance of the broadcast algorithm in [2] based on the model of no collision detection capability, we can see that, for $|M| = 1$, our algorithm will perform better if $n < \left(\frac{D}{4} \right) \log^{h-1} n$, i.e., for very high values D and Δ. For example, with $n = 1024$, $\Delta = 15$, $h = 3$, and $D = 60$, our algorithm will need, for $|M| = 1$, $2\Delta \cdot n \log n + 4n$ slots = 3,11,296 slots, while the algorithm in [2] will need 3,45,600 slots.

6 Conclusion

We have presented two deterministic algorithms for broadcast in ad hoc networks where the mobile terminals have collision detection capability. The first algorithm, based on depth-first traversal, is suitable for networks where topologies change infrequently. The second one is an extension of this first to take care of high mobility of nodes. Both these algorithms perform better than that in [2] for short messages, high Δ and diameter D.

References