
HUMAN-CENTERED SYSTEMS DEVELOPMENT AND USE
INCONSISTENCIES

Claudine Toffolon
Université du Littoral, LIL, Calais, France,

Salem Dakhli
Université Paris-Dauphine, CERIA, Paris, France,

Keywords : Coordination, Deviation, Human-centered system, Inconsistency, Project space, Actor, Software
engineering global model

Abstract : The framework we describe in this paper is composed of two parts. The first part provides a typology of
deviations and inconsistencies which occur during human-centered systems development and use. This
typology, based on four facets and three levels of abstraction (conceptual, detailed, technical), permits
identifying other types of deviations and inconsistencies not considered in the literature. It may be useful to
define methods and tools to manage and reduce deviations and inconsistencies in compliance with the
organization’s constraints, priorities and technical maturity. The second part consists in a coordination
framework which permits reduction of deviations and inconsistencies inherent in human-centered systems.

1 INTRODUCTION

A human-centered system is one in which humans,
supported by information technology, play a key
role. Development and use of human-centered
system involve actors, organizational structures,
rules, procedures and computerized tools. Actors are
humans who perform tasks in order to accomplish
various categories of goals related to the business
process supported by the human-centered system.
Their role is characterized by three types of
cooperation. On the one hand, they interact and
cooperate among themselves (actor/actor
cooperation). On the other hand, they interact and
cooperate with the computerized tools (software,
hardware, networks) which compose the human-
centered system (actor/computerized tool
cooperation). Finally, they interact with the
organizational context composed of organization's
internal and external constraints and priorities
(actor/organizational context cooperation).
Organizational structures, rules, procedures are
instruments which permit actors either to interact
among themselves or to cooperate with
computerized tools and organizational context.
Interactions and cooperation inherent in human-

centered processes are either formal or informal. In
recent years, many methods, techniques and tools
have been proposed to support formal interactions.
For example, workflow technology provides
instruments to automate well defined sequences of
actions performed by humans or machines. In
particular, it automates formal procedures associated
with actor/actor and actor/computerized tool
cooperation. Either formal or informal interactions
among actors or between actors and computerized
tools may be sources of various unexpected
deviations and inconsistencies. For example, since
software engineering may be defined as a discipline
of description (Jackson, 1995), a large number of
descriptions are produced, exchanged, and used by
the stakeholders of each software project according
to the development process and the quality assurance
standards and norms. Such descriptions include
specifications, analysis and design models, program
code, tests plans, schedules, change requests,
process models, users manuals, style guides,… They
are generally associated with formal interactions and
cooperation procedures and often result in deviations
and inconsistencies since establishing and
maintaining consistency between these documents is
difficult (Nuseibeh et al., 2000). By another way,
informal interactions and cooperation either among

34
Toffolon C. and Dakhli S. (2004).
HUMAN-CENTERED SYSTEMS DEVELOPMENT AND USE INCONSISTENCIES.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 34-41
DOI: 10.5220/0002652500340041
Copyright c© SciTePress

actors or between actors and computerized tools are
sources of various unexpected deviations and
inconsistencies. Indeed, most processes governing
these informal interactions cannot be completely
specified in advance and once for all. A human-
centered system inconsistency reflects a state of the
software development or use process or a state of a
software artifact resulting from this process, and
generally originates from a set of deviations.
Inconsistencies and deviations were defined by
(Cugola et al., 1996) and (Bandinelli et al., 1994).
(Fernström, 1993) have proposed formal definitions
of these concepts. A wide range of deviations and
inconsistencies arise during the development of
human-centered systems. For example, requirements
engineering generate many kinds of inconsistencies
related to the multiplicity of information sources. By
another way, the use of such systems often results in
deviations and inconsistencies related to the gap
between the cognitive, organizational and
sociological processes driving the actors behaviour
and the representation of these processes in the
human-centered system in use. Many researchers
and practitioners (Balzer, 1991) (Ghezzi et al., 1998)
(Nuseibeh, 1996) have proven that deviations and
inconsistencies are inevitable in particular in
complex human-centered systems. Moreover, in
such systems, removal of certain inconsistencies can
cause others to pop up. By another way,
inconsistencies may be useful for focusing on
aspects of human-centered systems which need
particular attention. Consequently, management of
human-centered systems inconsistencies must be
integrated in the human-centered systems
development and use processes. We think that to be
managed, deviations and inconsistencies must be
identified and the issues related to understanding
why they occur must be addressed. In this paper, we
propose a framework which:
1. describes a typology of deviations and

inconsistencies occurring during the human-
centered systems development and use,

2. permits understanding the causes of human-
centered systems deviations and inconsistencies,

3. may be helpful in building approaches and tools
to cope with human-centered deviations and
inconsistencies.

To be complete, the human-centered systems
deviations and inconsistencies description and
analysis must take into account firstly, the
conflicting interests and points of views of all the
organizational actors involved in human-centered
systems development and use, and secondly all the
aspects of software engineering. Therefore, our
framework rests on the software engineering global
model (Toffolon et al., 2002) built using the
economic agency theory (Alchian et al., 1972), the

transactions costs theory (Williamson, 1989) and the
software dimensions theory (Toffolon, 1999). The
remainder of this paper is organized as follows. In
section 2, we describe synthetically the related work.
Section 3 presents the software engineering global
model. In section 4, we analyze the causes of
deviations and inconsistencies related to human-
centered systems development and use, and describe
synthetically a typology of these deviations and
inconsistencies. Section 5 describes a coordination
model which permits reducing and managing a
subset of human-centered systems deviations
inconsistencies. In section 6 , we conclude this paper
by listing the principal applications of the proposed
framework in software engineering.

2 RELATED WORK

Many authors have analyzed inconsistencies
inherent in software engineering. In the remainder of
this section, we list several important research
papers related to our work. (Nuseibeh et al., 2000)
have argued for “making inconsistency respectable”
by sometimes avoiding or ignoring it, and more
often using it as “a focus for learning and a trigger
for further constructive development actions”.
Nevertheless, their work is dedicated to
inconsistencies related to descriptions associated
with software engineering. (Finkelstein et al., 1994)
present a technique for inconsistency handling in the
View-Points framework (Nuseibeh et al., 1992). In
their turn, (Grundy et al., 1998) describe an
experience with building complex multiple-view
software development tools that support diverse
inconsistency management facilities. (Cugola et al.,
1996) and (Bandinelli et al., 1994) have provided
definitions of inconsistencies and deviations inherent
in software engineering while (Fernström, 1993)
have proposed formal definitions of these concepts.
(Balzer 1991), (Ghezzi et al., 1998), and (Nuseibeh,
1996) have proven that deviations and
inconsistencies are inevitable in particular in
complex human-centered systems. Despite their
richness, the papers listed above do not propose any
typology of deviations and inconsistencies which
take into account all the aspects of software as well
as the conflicting interests and points of view of
stakeholders involved in software projects. Such a
typology is needed to define, for each inconsistency
category, the most appropriate approach to manage
it. The typology we propose in this paper permits us
stressing that human-centered systems deviations
and inconsistencies may be partly reduced and
managed through the coordination process.

HUMAN-CENTERED SYSTEMS DEVELOPMENT AND USE INCONSISTENCIES

35

3 THE SOFTWARE
ENGINEERING MODEL

Applying agency theory (Alchian et al., 1972) in
analyzing information technology role in modern
organizations demonstrates that software
engineering is governed by a set of contracts among
actors concerned with the software system to be
developed or maintained. At a given time, each actor
plays the role of consumer (principal) or producer
(agent) under the contracts which link him to the
other actors. So, human-centered system
development and use are a nexus of contracts among
different actors with conflicting interests and points
of view. The discrepancies between the actors
objectives are partly the source of software
engineering inconsistencies and related agency
costs. By another way, we notice that well
established software development methodologies
make a confusion between four businesses: the
customer’s business, the end user’s business, the
developer’s business and the architect’s business. To
eliminate this confusion, we use the transaction costs
theory (Williamson, 1989) to identify four different
spaces representing respectively these four
businesses:

 The problem space where are defined the
customers and users problems and their
organizational solutions. This space represents the
customer’s business.

 The solution or architectural space where are
defined the computer solutions of the
customer/user’s problems. This space represents the
architect’s business.

 The construction space where these solutions
are implemented. This space represents the
developer’s business.

 The operation space where are evaluated the
software’s usability from the user’s perspective as
well as its contribution to the organization’s
competitiveness. This space represents the end
user’s business.
Besides, each software project is represented in the
four spaces by a static part, a dynamic part and
actors. In each space, project’s dynamic part relates
to the software engineering process, project’s static
part is composed of software artifacts resulting from
this process, while project actors are human
resources concerned with this project. Each actor
may have two categories of roles: producer (agent)
or consumer (principal) of software artifacts. A role

played by a project’s actor in one of the four spaces
is either principal or secondary. In each space, it is
possible that a project has many actors assuming
secondary roles, but there can be only one project
actor involved in a principal role. Moreover, an actor
can play a secondary role in many spaces, but a
principal role only in one (every actor plays the
principal role in some space).
We identify four actor’s type: Customer (C),
Architect (A), Developer (D), User (U). Each actor
play different role in each space (Toffolon et al.,
2002). An actor type is a concept that provides the
specification of basic actors. Each actor type is
associated with one business. In order to simplify the
framework presentation, we assume that each basic
actor belongs to only one actor type. For example, a
maintainer of a software system in the construction
space is a basic actor which belongs to the developer
actor type.
The software dimensions theory (Toffolon, 1999)
identifies ten dimensions which permit taking into
account all the aspects of the software as well as all
the conflicting interests and points of view of the
project actors. Those ten dimensions concern
altogether the software process and the artifacts
produced by this process. The process’ dimensions
(cost dimension, delay dimension, technical
dimension, communication dimension and
organizational dimension) and the product’s
dimensions (functional dimension, human
dimension, economic dimension, organizational
dimension and temporal dimension) demonstrate
that a same software may reflect many different
realities which depend on the organizational, social
and economic contexts of its use and exploitation.
Each project space is associated with a subset of the
ten software (Toffolon et al., 2002).
The correspondence between the four spaces
originates from the iterative progress of the software
development process, designated by the acronym
“ PACO ” (Problem-Architecture-Construction-
Operation) : the definition of a computer solution of
an organizational problem permits the transition
from the problem space to the solution space, the
implementation of this solution expresses the
transition from the solution space to the construction
space, the installation of the software artifacts built
in the construction space results in the transition
from this space to the operation space, the
description of problems and needs generated by the
use of the software installed permits the transition

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

36

Deviation

Horizontal
deviation

Vertical
deviation

Inconsistency

Vertical
Inconsistency

Horizontal
inconsistency

Space

Complexity Uncertainty

is-a

causes

generates

increases

generates

contributes to

generates

causes

concerns

is-a

Figure 1: Software Engineering Inconsistencies Metamodel

from the operation space to the problem space. The
human interface between two spaces is carried out
by the project’s actors who play a principal role at
once in these two spaces.

4 THE SOFTWARE
ENGINEERING
INCONSISTENCIES

In this work, we use the four project spaces to give
more detailed definitions of software engineering
deviations and inconsistencies by introducing the
concepts of intra-space and inter-spaces deviations
and inconsistencies (Toffolon et al., 1998). An intra-
space (vertical) deviation is an event which causes a
discrepancy either between the real and anticipated
behavior of the process supporting one of the four
project spaces, or between the real and anticipated
behavior of a software artifact resulting from this
process. An intra-space (vertical) inconsistency may
be generated by an intra-space deviation and
describes either the state of the process supporting
one of the four project spaces, or the state of a
software artifact resulting from this process. In the
same way, an inter-spaces (horizontal) deviation is
an event which disturbs interactions between two
spaces. An inter-spaces (horizontal) inconsistency
may be generated by an inter-spaces deviation, and
describes either the state of inter-spaces interactions

or the state of software artifacts concerned with
these interactions. Vertical deviations and
inconsistencies are related; on the one hand, to the
activities of processes supporting the four project
spaces and software artifacts they build; and on the
other hand, to the communication problems
associated with these activities. Horizontal
deviations and inconsistencies depend on vertical
deviations and inconsistencies which can worsen
them since the software artifacts resulting from the
process supporting a given space are used in the
information flows exchanged between this space and
the three other project spaces. Vertical and
horizontal deviations and inconsistencies are
interdependent since, in each project space, the actor
who plays the principal role is at the same time
producer of software artifacts and consumer of
artifacts coming from the three other project spaces.

Consequently, the software engineering
deviations and inconsistencies constitute a spiral
whose progression can be compared with a
succession of chain reactions which explain the
iterative character of the software development
process, and the inadequacy of the conventional
lifecycle. Figure 1 illustrates the software
engineering inconsistencies metamodel.

The definitions provided above give only a
general view of software engineering deviations and
inconsistencies. In particular, to cope with human-
centered systems inconsistencies, we must take into
account aspects related to human actors involved in
such systems development and use. The typology we

HUMAN-CENTERED SYSTEMS DEVELOPMENT AND USE INCONSISTENCIES

37

propose in this work aims to bridge the gap between
on the one hand, human-centered systems deviations
and inconsistencies and on the other hand, tools built
to reduce their impacts. In that way, we consider that
deviations and inconsistencies of human-centered
systems are either formal or informal. Formal
deviations (vs. inconsistencies) occur if a formal
procedures or rules related to software processes or
software artifacts are broken. Informal deviations
(vs. inconsistencies) are related either to informal
aspects of software development and use processes,
or to software artifacts. The distinction between
formal and informal deviations (vs. inconsistencies)
is important since tools which permit coping with
them are different. Indeed, it is possible to reduce
formal deviations (vs. inconsistencies) impacts by
defining tools based on existing formal procedures.
By another way, tools needed to cope with informal
deviations (vs. inconsistencies) are dependant on
many factors like the nature of the deviation, the
organization’s maturity and the existing
communication and coordination know-how.
Consequently the degree of formalism is the first
facet of the typology we propose. We note that we
use the expression “ degree of formalism ” to stress
that each human-centered activity is a mix composed
of formal and informal tasks.

Secondly, we focus on the type of cooperation
where deviations and inconsistencies occur. So, we
distinguish the actor/actor and the actor/tool
deviations (vs. inconsistencies). The first category
splits into communications and coordination
deviations (vs. inconsistencies) while the second is
composed of actor/tool and actor/context deviations
(vs. inconsistencies). Actor/tool deviations and
inconsistencies originate notably from the
inadequacy of the computerized tool with the actor
cognitive process. They may result in inefficient
contribution of actors to the organization’s business
processes. We note that the analysis of the tool/tool
deviations (vs. inconsistencies) is beyond the scope
of this paper which focus on the human aspects of
human-centered systems deviations and
inconsistencies. Consequently, the nature of
cooperation is the second facet of the proposed
typology.

The third facet of this typology, called
“localization”, relates to the project spaces where
the deviations (vs. inconsistencies) occur. This facet
reflects the vertical (vs. horizontal) nature of human-
centered deviations and inconsistencies.
The second and third facets play a critical role in
determining the appropriate tools to reduce
deviations and inconsistencies impacts. Indeed, they
permit taking into account the characteristics of the
software project spaces as well as the actors and
processes concerned with the deviations and

inconsistencies. In addition to actors directly
involved in their development and use, human-
centered systems interact indirectly with other
organizational actors while cooperating with the
organizational context and the external environment.
Deviations and inconsistencies related to
computerized tool/organizational context
cooperation reflect notably human-centered system
inadequacy with the organization’s structure. Such
deviations and inconsistencies are generally difficult
to detect and their impacts are observable notably
through the organization’s business processes
pitfalls. Because of the economic, organizational and
social importance of these impacts, we consider that
the organizational aspects constitute the fourth facet
of the deviations and inconsistencies typology we
propose in this work. This typology is composed of
three abstraction levels: a conceptual level, a
detailed level and a technical level. At the
conceptual level, a deviation (vs. inconsistency) of a
human-centered systems may be analyzed on the
basis on the four facets described above i.e. (degree
of formalism, nature of cooperation, localization,
organizational aspects). The detailed level permits
describing the characteristics of a given deviation
(vs. inconsistency) four facets. This description
includes notably the actors, the artifacts, the
processes, the rules and the spaces concerned with a
given deviation (vs. inconsistency). At the technical
level, techniques, methods and tools which permit
coping with deviations and inconsistencies are
described. The next section provides a synthetic
description of a coordination model which permits
reduction of human-centered systems deviations and
inconsistencies which result from actor/actor
interactions and cooperation.

5 THE COORDINATION
FRAMEWORK

As stressed above, human-centered actor/actor
deviations and inconsistencies associated with
actor/actor interactions and cooperation are either
formal or informal. For example, deviations and
inconsistencies related to descriptions (Nuseibeh et
al., 2000) belong to this category since descriptions
are produced, used, and exchanged by the software
project stakeholders. They may be formal if such
descriptions are associated with formal methodology
or quality assurance procedures. Nevertheless, such
formal deviations and inconsistencies are often
associated with informal deviations and
inconsistencies resulting notably from
misinterpretations of terms and ideas used by
descriptions issued from the software development

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

38

process. In particular, the degree of precision and
formality of a description is variable, and depend
upon the goals and the constraints of the software
development process phases and activities.
Secondly, descriptions associated with this process
are often characterised by a high degree of volatility.
Finally, since software descriptions are undertaken
by humans actors, they may be ill-formed or self-
contradictory. By another way, various informal
deviations and inconsistencies may result from
informal interactions between the software project
stakeholders during the software project lifecycle.
Such interactions are among the main characteristics
of many iterative software development lifecycles
like the spiral model (Boehm, 1988). There are two
categories of actor/actor interactions and
cooperation: the producer/consumer cooperation,
and the sharing resources cooperation. The
producer/consumer cooperation occurs during the
realization of a contract between two stakeholders.
The sharing resources cooperation occurs when two
stakeholders use common resources (software, tools,
procedures, standards,…) while carrying out the
software engineering process tasks. For example,
software developers share the same software
engineering environment, the same human resource
may be at the same time software designer and
software programmer within the same software
project. By another way, producer/consumer
relationship between two project actors belonging to
the same project space means that artifacts produced
by one project actor are consumed by another
project actor belonging to the same category. For
example, there is a producer/consumer relationship
between the software programmer and the software
designer who belong to the developer category.
Indeed, to carry out its coding tasks, the programmer
consumes design artifacts built by the designer.
Consequently, actor/actor deviations (vs.
inconsistencies) category splits into two sub-
categories: producer/consumer deviations (vs.
inconsistencies) and sharing resources deviations
(vs. inconsistencies). The actor/actor deviations and
inconsistencies may have important negative
impacts on the software development process and on
the software system issued from it. Therefore, a
coordination process is needed in order to reduce the
impacts of formal and informal deviations and
inconsistencies inherent in actor/actor cooperation.
The coordination process in software engineering
permits managing dependencies between the
stakeholders involved in the software development
and maintenance processes. The coordination
process rests on formal and informal organizational
models which determine the distribution of roles
among interdependent stakeholders. So, it aims to
answer the question: who do what? when?

According to the global software model, since
dependencies between stakeholders result in
contracts, the coordination process in software
engineering describes the formal and informal
organizational procedures needed to carry out these
contracts. Each organizational procedure points to
one or many operational procedures. An operational
procedure is a set of ordered activities associated
with a stakeholder’s role. In other words, an
operational procedure describes the concrete actions
undertaken by a stakeholder involved in a contract.
To manage vertical and horizontal dependencies, we
propose a coordination process composed of two
sub-processes. The vertical coordination sub-
processes aims at managing vertical dependencies
while the horizontal coordination sub-process
permits managing horizontal dependencies. Each
coordination sub-process is composed of two layers.
The first layer relates to the informal coordination
activities while the second layer corresponds to the
formal coordination activities which are supported
by formal organizational procedures stored in a
repository, called the coordination repository. Since
the coordination process in software engineering
supports the software development and maintenance
process, it must be integrated to this process. So, the
software engineering coordination process depends
on the lifecycle model of the software development
and maintenance process it supports. Besides,
according to the software engineering model
presented above and the software engineering
process described in (Ghezzi et al., 1998), the
software engineering coordination process lifecycle
is based on five spirals: four vertical spirals and one
horizontal spiral. The horizontal coordination spiral
supports the horizontal coordination sub-process and
permits communication, artifacts exchange and
navigation between the four project spaces. The four
vertical coordination spirals, which support the four
vertical coordination sub-processes associated with
the four project spaces, are:
• The problem coordination spiral associated with

the problem spiral which supports the problem
space,

• The architecture coordination spiral associated
with the architecture spiral which supports the
solution space,

• The construction coordination spiral associated
with the construction spiral which supports the
construction space,

• The operation coordination spiral associated with
the problem spiral which supports the operation
space.

The five coordination spirals are interdependent. So,
representing these processes using a lifecycle based
on the spiral model is a difficult task. Firstly, each
coordination spiral has two aspects: formal and

HUMAN-CENTERED SYSTEMS DEVELOPMENT AND USE INCONSISTENCIES

39

informal. Secondly, coordination tasks and software
development tasks are intertwining. Thirdly, the
horizontal coordination process between two project
spaces is preceded by a nexus of software
development and vertical coordination tasks and
generates new coordination and development tasks
taking place in the two spaces. Finally, since the
software development process is iterative, the
coordination processes supporting this process are
also iterative. So, a clear representation of the
software engineering coordination process requires
the description of the meta-lifecycle supporting the
five coordination spirals.
The horizontal and vertical coordination sub-
processes rest on a meta-life cycle called (INFO)
composed of four phases: Initialization, Negotiation,
Formalization an Operation. The Initialization and
the Operation phases permit shifting between the
coordination activities and the software engineering
activities while the Negotiation and the
Formalization phases support the two layers of the
coordination horizontal and vertical sub-processes.

The Initialization phase
The Initialization phase consists in identifying the
scope of coordination problem to be solved

The Negotiation phase
In our framework, the first layer of each
coordination sub-process is supported by a
Negotiation phase. It consists to cope with
coordination topics which are not carried out by the
formal procedures stored in the coordination
repository. The Negotiation phase consists in
eliminating conflicts and discrepancies between
producers and consumers of artifacts needed to build
a software system.

The Formalization phase
The formalization phase supports the formal layer of
the coordination sub-process. This phase rests on
formal organizational procedures needed to carry out
contracts among project actors.

The Operation phase
The Operation phase links the coordination

activities to the software engineering activities. It
rests on the operational procedures associated with
the formal organizational procedures supporting the
coordination sub-process layer.

6 CONCLUSION

The framework we describe in this paper provides
basic instruments to cope with deviations and
inconsistencies of human-centered systems. In
particular, the proposed typology permits defining

methods and tools to manage inconsistencies in
compliance with the organization’s constraints,
priorities and technical maturity. So, it is compliant
with the Simon’s Bounded Rationality Principle
(Simon, 1983). By another way, the typology of
inconsistencies and deviations proposed in this work
permits identifying other types of deviations and
inconsistencies not considered in the literature.
These deviations (vs. inconsistencies) must be
managed since they are sources of uncertainty and
are not compliant with many software quality
principles like traceability and continuous
improvement of the software development process.
A future research direction consists on the one hand,
to propose a more formal description of the
proposed typology of human-centered deviations
and inconsistencies, and on the other hand, to use the
proposed typology to build management and
reduction approaches which take into account all the
facets of human-centered deviations and
inconsistencies. Since it may be beneficial to avoid
or defer the elimination of some deviations and
inconsistencies, such approaches should include
evaluation instruments of the cost and the outcome
of reduction and management of deviations and
inconsistencies.
The use of the coordination process to cope with the
actor/actor inconsistencies and deviations associated
with human-centered systems permits us identifying
many practical problems. Firstly, a formal procedure
language is needed. The main advantage of such a
language consists in minimizing the number and the
negative effects of deviations and inconsistencies
resulting from procedure misinterpretations , and on
the other hand, it improves the transition between
software engineering activities and coordination
activities by mapping organizational procedures and
operational procedures. Finally, in order to optimize
the outcome of coordination process in deviations
and inconsistencies management and reduction, the
transition from the Negotiation phase to the
Formalization phase need to be described formally.
Indeed, this transition is related to procedure reuse,
procedure creation and procedure configuration
management.

REFERENCES

Alchian A.A. and Demsetz H., 1972, “Production,
Information Costs and Economic Organization”,
American Economic Review, Vol. 62, No.5, pp. 777-
795.

Balzer R., 1991, “Tolerating Inconsistencies”, in
Proceedings of ICSE’13 Conference, Austin, Texas,
USA, May 13-17, 1991, pp. 158-165.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

40

Bandinelli S., Di Nitto E. and Fuggetta A., 1994,
“Policies and Mechanisms to Support Process
Evolution in PSEE”, In Proceedings of the 3rd IEEE
International Conference on the Software Process,
Reston, VA.

Boehm B.W., 1988, “ A Spiral Model of Software
Development and Enhancement ”, Computer, Vol. 21,
No.5, pp. 61-72.

Cugola G., Di Nitto E., Fuggetta A. and Ghezzi C., 1996,
“A Framework for Formalizing Inconsistencies and
Deviations in Human-Centered Systems”, ACM
Transactions on Software Engineering and
Methodology, Vol. 5, No.3, pp. 191-230.

Fernström C., 1993, “State Models and Protocols in
Process-centered Environment”, in Proceedings of the
8th ACM International Software Process Workshop,
Wadern, Germany.

Finkelstein A., Gabbay D., Kramer J. and Nuseibeh B.,
1994, “Inconsistency Handling in Multi-Perspective
Specifications”, IEEE Transactions on Software
Engineering, Vol. 20, N°8, pp. 569-578.

Ghezzi C. and Nuseibeh B., 1998, “Managing
Inconsistencies in Software Development”, Guest
Editorial, Transactions on Software Engineering, Vol.
24, No.11, pp. 906-907.

Grundy J.C., Hosking J.G. and Mugridge W.B., 1998,
“Inconsistency Management for Multi-view Software
Development Environments”, IEEE Transactions on
Software Engineering: Special Issue on Managing
Inconsistency in Software Development, Vol. 24,
No.11.

Jackson M., 1995, “Software Requirements &
Specifications : a lexicon of practice, principles and
prejudices”, Addison-Wesley.

Nuseibeh B. and Finkelstein A., 1992, “View-Points: A
Vehicle for Method and Tool Integration”,
Proceedings of the 5th workshop on Computer-Aided
Software Engineering (CASE’92), July 6-10th, 1996,
Montreal, Canada, IEEE Computer Society Press, pp.
50-60.

Nuseibeh B., 1996, “To Be or Not To Be: On Managing
Inconsistency in Software Development”, in the
Proceedings of the 8th International Workshop on
Software Specifications and Design (IWSSD’8),
Schloss, Velen, Germany, pp. 164-169.

Nuseibeh B., Easterbrook E. and Russo A., 2000,
“Leveraging Inconsistency in Software Development”,
Computer, Vol. 33, No. 4, pp. 24-29.

Simon H.A., 1983, “Models of Bounded Rationality”, (2
volumes), MIT Press, Cambridge.

Toffolon C., 1999, “The Software Dimensions Theory”, in
the Proceedings of ICEIS’99 Conference, Setubal,
Portugal, published by KLUWER ACADEMIC
PUBLISHERS in “Enterprise Information Systems”,
Selected Papers Book, Joaquim Filipe (Ed.).

Toffolon C. and Dakhli S., 1998, “A Framework for
Software Engineering Inconsistencies Analysis and

Reduction”, In the Proceedings of the 22nd Annual
International Computer Software & Applications
Conference (IEEE-COMPSAC’98), Vienna, Austria,
August 1998, IEEE Computer Society Press, pp. 220-
227.

Toffolon C. and Dakhli S., 2002, “The Software
Engineering Global Model”, in the Proceedings of the
20th Annual International Computer Software and
Application Conference (IEEE-COMPSAC’02),
Oxford, England, August 26-29, 2002, IEEE
Computer Society Press.

Williamson O.E., 1989, “Transaction Cost Economics”, in
“R. Schmalensee and R. Willig (Eds): Handbook of
industrial organization”, Vol. 1, North-Holland.

HUMAN-CENTERED SYSTEMS DEVELOPMENT AND USE INCONSISTENCIES

41

