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Abstract: When building applications it is usually the case that developers are forced to focus on “one size fits all” 
solutions. Customization is often burdensome for the user, or so complex that it would be unrealistic to ask 
an end user to undertake this task. In the areas of personal information management and collaboration there 
is no reason to accept this limitation, as there is a body of information about the user that reflects their 
interests: namely their personal documents. The Dynamic Interest Profile (DIP) is a system intended to track 
user interests, allowing for the creation of more intelligent applications. In this paper we discuss our 
approach to implementing the DIP, challenges that this implementation presents, as well as the security and 
privacy concerns that the existence of such an application raises. 

1 INTRODUCTION 

One of the biggest challenges in developing software 
is that all users are different. For example when 
retrieving email some users make meticulous use of 
folder structures to file and find email, while others 
keep all email in one location and use search or 
sorting to find needed documents  (Ducheneaut, 
2001). Because of these differences, attempts to add 
intelligence to applications often fail. For instance 
due to its tendency to give advice to users who 
neither want nor need it, the Microsoft Office 
Assistant (a.k.a. Clippy the paperclip) was hated by 
many.  

Personal information management (PIM) 
applications are not free from the problem of dealing 
with user difference. Lacking any better course of 
action these applications tend to cater to the lowest 
common denominator (e.g. address completion 
applications suggest names in alphabetical order and 
search returns results based on lexical similarity).  
But in the case of personal information management 
there is a ready store of information that can be used 
to tailor applications to individual users, namely 
their personal documents. The Dynamic Interest 
Profile (DIP) is our implementation of a system that 
tracks user interests and provides an interface for 
applications to easily access this information. 

The DIP recognizes four different types of 
entities: people, documents, terms, and collections. 

For each of these the DIP assigns both an all time 
importance and detects entities of emerging 
importance. The DIP is able to determine these 
values based on a user’s personal documents. 

Tracking user information for the purpose of 
making these determinations carries with it a set of 
challenges. The algorithms for determining 
importance involve a classic computation vs. storage 
trade-off.  Depending on the PIM system, 
maintaining the information necessary to keep the 
DIP up to date may require additional storage. This 
is an especially important challenge as the 
infrastructure requirements for enterprise email 
systems are usually quite large already.  

In addition to the practical implementation 
challenges, privacy and security concerns are raised 
by the very existence of a process that tracks user 
interests. Many users may balk at the idea of their 
interests being tracked, and mistrust assurances that 
the information is not being shared. Even if users 
trust that their information will not be misused, it is 
necessary to provide the same level of security for 
this summary information to that which is provided 
for the documents characterized. 

It is our belief that despite these challenges the 
functionality the Dynamic Interest Profile provides 
is well worth the effort. Applications such as search 
and address completion, when effectively tailored to 
a user’s interests, can greatly ease their lives. 
Collaborative applications can be automated to 
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indicate when a user’s interests provide an 
opportunity to leverage the skills of others. An inbox 
can be sorted not just by date or sender, but by 
importance as well. In an era when many of us spend 
much of our day dealing with email and other 
documents, seemingly small improvements such as 
these can significantly improve both productivity 
and job enjoyment.  

2 ALGORITHMS 

User profiling has been an area of interest for many 
years. A variety of techniques have been developed, 
based on different data sources (shopping habits, 
browsing habits, user feedback (Widyantoro et. al., 
1999), etc.) and utilizing different algorithmic 
techniques (machine learning, keyword analysis, 
social filtering, etc. (Soltysiak and Crabtree, 1998)). 
In our approach we use user data and actions to 
determine the overall and emerging importance of 
four different entity types: people, terms, documents, 
and collections. For each instance of one of these 
types (e.g. a person, a term) we use a variety of 
statistical techniques specific to the type in order to 
determine the instance’s importance to the user. 

2.1 People Importance 

The importance of a person to a user is determined 
by analyzing the relationship between the user and 
the person as indicated by the user’s email. Those 
people who are most important are the ones with 
whom a user has the strongest relationships. 
Relationship strength is based on the relationship’s 
(Whittaker et. al., 2002): 

• Longevity 
• Currency 
• Reciprocity 
• Exclusivity 
• Frequency 

This information is captured using a linear 
combination of functions where each function 
represents a particular aspect of the relationship. The 
equation for calculating a person p’s importance is: 
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2.2 Term Importance 

Terms are words and phrases that carry meaning in a 
user’s documents. Parsing documents to find terms 
falls outside the scope of this paper, but there is a 
large body of literature on this topic, (Silva & Lopes, 
1999), (Reyle & Saric, 2001), (Thanopolous et. al., 
2003), and (Manning and Shutze, 2000), just to 
name a few. Once terms have been identified, we 
define a term as important to the user when it is: 

• Associated with the user 
• Descriptive 
• Discriminative 
• Relevant 

As with people importance, this information is 
captured by using a linear combination of functions 
where each function represents one of the above 
qualities. The equation for calculating a term t’s 
importance is: 

1 2 3 4( ) user subject folders timescore t f f f fλ λ λ λ= + + +
 

The component functions of this equation have 
the following properties: 

ICEIS 2004 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

282



 

1 2 1

2

( ) ( )  is more associated with

    the user than .
user userf t f t t

t

> →

1 2 1

2

( ) ( )  is more associated with

    document subjects than  and hence considered

    to be more descriptive.

subject subjectf t f t t

t

> →

1 2 1

2

( ) ( )  is more useful in 

  determining what folder a document 

  containing the term resides in than 

  and hence considered to be more

  discriminative.

folder folderf t f t t

t

> →

1 2 1

2

( ) ( )  is more associated with

    the current time period than  and hence

    considered to be more relevant.

time timef t f t t

t

> →

 

2.3 Document Importance 

Documents are the basic unit in a PIM system. A 
document may be a calendar entry, an email, a word 
processing document, etc. Document importance is 
determined by considering document content, meta-
data, and usage. Unlike the calculation of people and 
term importance, document importance is dependant 
upon other DIP calculations, namely people and 
term importance.  The exact equation varies based 
on document type, in the case of an email, d, it is: 
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where a is the document author, R is the 
document recipient list, S is the set of terms in 
the subject and B is the set of terms in the body. 

The function fusage is a function with the property 
that: 
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The astute reader may ask why we choose to 
average the importance of the body terms and take 
the max of subject term importance when calculating 
document importance. This is a result of our 
observation of the differing content of the document 

subject and the document body. The document 
subject or title tends to contain one or two key terms 
that describe the document while the other terms 
serve as window dressing.  Because of this 
averaging over the importance of all of the terms in 
the title leads to inaccurate comparisons. For 
instance, if “golf” is my most important term a 
document titled “Improving your Golf” should not 
be considered less important than one titled “Golf”. 
Document bodies on the other hand tend to contain 
similar numbers of filler words as they are generally 
written in prose. Because of this, averaging over the 
importance of terms in the bodies still leads to 
comparable results. 

2.4 Collection Importance 

Collections may be of varying types, ranging from 
email folders to public discussion databases. What 
constitutes a collection is dependant on the specific 
PIM system being used, but for all collections the 
broad attributes that indicate importance are the 
same: collection content and usage. For some 
collections meta-information about the collection 
may also be important. As with documents, the 
calculations for discovering collection importance 
are dependant on other DIP calculations.  The 
general form of the calculation of the importance of 
a collection c is: 

3
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| |
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where Dc is the set of documents in collection c. 

The component functions of this equation have 
the following properties: 
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Note that the document score score(d) 
incorporates term and people importance, hence it 
reflects the frequency of important people and terms 
in the collection. 

2.5 Emerging Items 

It is not always the case that we are interested in 
items that are important over all time, sometimes we 
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are interested in items that are of emerging 
importance. In order to detect emerging items we 
calculate how associated the item is with the recent 
time period using point wise mutual information, 
Chi-Squared, or some equivalent statistical test 
(Yang and Pedersen, 1997) (Manning and Shutze, 
2000) (Duda et. al., 2001). In the case of terms and 
people the number of references to the person or 
term is used for this calculation. In the case of 
collections the frequency of access and modification 
by the user is used. The general equation for 
detecting the extent to which a term x is of emerging 
importance is: 

( ) A( , ) xemerge x x t C=  where t is the current 

time period, A(x,t) is the strength of association 
between x and t, and Cx is the frequency of term 
x. 

2.6 Efficient Calculation and Storage 

In order for the DIP to be deployable in a real world 
setting it is necessary for the importance and 
emergence calculations to be performed efficiently. 
In order to completely recalculate many of the 
functions involved the entire corpus of documents 
would have to be examined, a very time consuming 
operation. To allow for efficient recalculation, 
intermediate results are stored. These allow 
recalculation based only on the delta in the 
document corpus.  These intermediate results take 
the form of feature vectors. A feature vector is a set 
of keys (name, terms, etc.) and associated counts. 
These feature vectors represent those intermediate 
parts of the calculation that can be incrementally 
changed when documents are created, deleted, or 
modified. 

Once DIP scores have been recalculated the 
results are stored as score vectors representing the 
importance of the DIP entities to the user. Score 
vectors are sets of keys associated with a floating 
point score. Details of the storage framework are 
discussed in section 3. 

2.7 Limited DIP Implementation 

In order to validate the underlying concepts of the 
DIP and provide a platform for further 
experimentation we have developed a limited DIP 
implementation. This implementation performs the 
calculations for term importance, as well as limited 
versions of the document importance and people 
importance calculations, based upon user emails.  

When calculating term importance we treat the 
subject and body as sets of terms. We do not use any 
information as to the order of the words or the 
frequency of their occurrence within the document. 
The implementations of the sub functions making up 
term importance are: 
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where Ct,x is the number of occurrences of term 
t in set  x and I(x,y) is the point wise mutual 
information between x and y. See (Yang and 
Pedersen, 1997) and (Manning and Shutze, 
2000) for a description of point wise mutual 
information. 

In order to calculate fuser it is necessary to have 
some notion of the general frequency of use of a 
term. In order to determine this we maintain an 
organizational “background vector” that contains the 
number of times each individual term has appeared 
overall in an organization’s email. In environments 
where security is a concern, it is possible to replace 
this organizational background vector with one 
based on the general frequency of words within the 
language being used. 

People importance in the draft implementation is 
based upon a limited notion of frequency and 
reciprocity characterized by the equation:  

1 2( ) p pscore p S Rλ λ= + where Sp is the set of 

emails sent to p, Rp is the set of emails received 
from p and 1 2.λ λ>>  

Document importance in the draft 
implementation is the same as the full equation 
described in section 2.3 minus the usage term: 
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Both term importance and people importance are 
stored in the prototype implementation, while 
document importance is calculated on the fly. 
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3 IMPLEMENTATION 

As we set about implementing the DIP component 
into a piece of enterprise collaboration software, we 
initially compiled a list of requirements: 

 
Single- and multi-user support. We had to 

ensure that we were able to maintain interest profiles 
for a potentially large number of users. In addition, 
maintaining a DIP for a single user on a single 
workstation working off-line was also required. 

Abstract document model. The DIP is required 
to handle information from a diverse set of domains, 
including: email documents, calendar & scheduling 
data, instant messaging, and personal documents. A 
document model was needed for transforming data 
from such domains into an abstract format, capturing 
the information needed for compilation of interest 
profiles. 

DIP object model The object model captures 
summary interest profiles for entities. As discussed 
in Section 2, summary interest profiles contain 
importance scores associated with terms, people, and 
collections. 

Incremental updates. The DIP is compiled 
from a large body of documents generated over 
potentially long periods of time. The DIP 
infrastructure had to be able to incrementally update 
the object model to gradually refine results over 
time. 

DIP persistence model. Incremental updates 
require a persistence model to store interest profiles 
constructed over long periods of time. Also, since 
maintaining the DIP for multiple users consumes 
space, persistence allows us to bring a smaller 
“active” working set of the interest profiles into 
server memory on demand. 

Privacy and Security. As mentioned earlier, 
documents can contain sensitive information that 
people aren’t always willing to disclose. 
Mechanisms for preventing access to sensitive 
personal information were needed.  

 
We now proceed to discuss the details of the 

implementation. 

3.1 DIP Document Model 

The document model adopted in the implementation 
summarizes the original document with regard to 
people and terms. As discussed in Section 2, 
information on people is extracted from fields within 
the original document, preserving the relationships 
that exist between documents and people. This 
allows us to give a higher importance to (for 

instance) a person on the “to:” list of an email versus 
a person on the “cc:” list.  

For email documents, people are represented by 
their email addresses. However, since multiple 
addresses can map to a single email account, 
ambiguity must be resolved. When translating 
between original documents and abstract DIP 
documents, we attempt to normalize email addresses 
to their unique id maintained by a profile 
management system. In our target enterprise 
collaboration software, WebSphere Member 
Manager™ (WMM) is the global solution for 
managing member profiles. 

Terms encountered in header fields and the body 
of documents are compressed into a set of unique 
terms as discussed in Section 2. Bags of unique 
terms are maintained for each field deemed relevant 
for compilation of interest profiles. Also, any source 
collection information included in the original 
document is kept. 

 

3.2 DIP Object Model and 
Persistence 

We adopted the vector model discussed in Section 2 
for the DIP object model, where a collection of 
feature and score vectors comprise the interest 
profile for a user. This allows us to extend the model 
by adding additional features as needed. The two 
main features captured are term and people 
occurrence, but the model also contains 24 smaller 
vectors representing terms and people for the last 12 
months. Counts computed from documents 
processed during a more limited timeframe can be 
more informative than the global vectors since they 
incorporate a recency factor into the calculations, 
and they allow applications to track how interests 
change over time.  

Feature vectors are either personal, such as the 
vector describing people importance, or shared. The 
vectors contain a user identifier (or an identifier for 
the global user), a vector id, and a set of features, 
where each feature has a feature name – for instance 
a term – and a count/score. The feature vectors are 
persisted in a relational database (DB2 UDB™) in a 
table having these four columns. To optimize for 
quick retrieval of vector features, a B-tree index on 
user id and vector id is maintained. The table is a 
read-only table most of the time, minimizing lock 
contention and maximizing concurrency. While the 
DIP is being updated, applications are forced to wait 
until the update is complete. 
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3.3 Offline Operation 

We have also implemented an offline version of the 
DIP, running on a workstation for a single user. 
When in offline mode, a client runs the DIP 
algorithms locally on a smaller set of personal 
documents.  

As mentioned in Section 2, shared information is 
used, though minimally, to compute the important 
terms for a user. Shared information in the form of a 
background vector is stored on a common server, 
and it is replicated to the client whenever the client 
goes online. The replica of the background vector on 
the client improves the accuracy of the term 
importance calculation. The client keeps track of 
local changes to the background vector, and it 
updates the shared representation when going back 
online. 

3.4 Security and Privacy 

A DIP server falls under a category of systems 
described as “user modeling servers” (Fink and 
Kobsa, 2000), that is servers that support 
applications requiring user models for 
personalization features.  As such, it needs 
mechanisms to protect personal information from 
unauthorized access and potential eavesdropping. 
Many factors are taken into consideration when 
determining the level of security and privacy to 
provide, for instance the privacy preferences of the 
user, self-regulatory privacy principles within an 
organization, or the privacy laws of the country or 
state. 

A combination of anonymization and encryption 
techniques can be deployed to ensure the privacy of 
the individual. In the DIP system, personal 
information is encrypted at the database level to 
ensure privacy. This protects from both 
eavesdropping and from individuals, such as 
database administrators, having high levels of 
authorization. Methods for anonymization (i.e. 
concealment of the relationship between a particular 
user and data about him) are currently being 
investigated for future implementation. 

3.5 Implementation Overview 

Figure 1 shows an overview of the DIP implemented 
as a processing agent in a pipeline of agents 

operating on a document stream. Processing agents 
are designed to carry out specific tasks, for instance 
indexing documents for search, flagging documents 
that contain viruses or – in the case of the DIP – 
updating interest profiles. Some agents modify 
documents as they travel down the stream, for 
instance an agent expanding group names into a list 
of members. While the DIP agent does not modify 
documents, it is easy to imagine a system where the 
agent tags documents with information such as 
sender importance, text importance, or an 
aggregated overall importance score. Observe that 
such tagging provides a snapshot of the importance 
calculated when the document was first received, 
and that the importance will change when the 
underlying interest profile is updated. Sometimes it 
is useful to recall the importance of a particular 
document at the time it was received, but as a 
person’s interest profile changes, it is often desirable 
to bring old documents to the forefront. For this 
reason, we do not put scores into the documents. 

Documents on the stream originate from a 
variety of applications, including email, calendaring 
& scheduling, and instant messaging. A flag may be 
associated with documents indicating whether they 
have been updated or deleted from their 
corresponding data repositories. This allows us to 
update the DIP object model correctly. For instance, 
spam ignored by spam filters is typically deleted 
immediately from an inbox. Often we can detect that 
an email has been deleted early enough to remove it 
from the queue before it has been incorporated into 
an interest profile. Efficient spam filters also help 
keep DIP profiles more accurate. 

In real-world mail systems, message transfer 
agents (MTAs) ensure that incoming messages are 
delivered locally into the mail store, and outgoing 
messages are sent using SMTP to their destinations. 
Mail transfer agents are operating on queues of 
incoming/outgoing email, and the DIP processor is 
simply another agent for such queues. Similar 
mechanisms exist for other messaging systems (e.g. 
instant messaging). 

Figure 1: Agents operating on a stream of 
documents 

Indexing Agent DIP Agent
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Figure 2 shows the agent passing documents to 
the DIP translator, which handles the conversion 
from the stream document format to the DIP 
document format.  A translated document is pushed 
onto internal queues, where they are stored until a 
task is triggered to update the interest profiles. 
Translation, name normalization, and queue 
operations are handled quickly to prevent the DIP 
agent from becoming a bottleneck in the system. 
DIP documents on the queues are periodically 
popped and fed to the processor, which 
incrementally updates the interest profiles. There is a 
many-to-one mapping between documents and 
profiles, enabling the processor to update one profile 
at a time by batching documents together. Taking 
email as an example, the batch contains all emails 
sent by or received by an author during the 
timeframe since the last DIP update was carried out. 
As a consequence, documents are tagged to indicate 
which person (or group) they are associated with. 
For instance, an email sent by person A to person B 
with a carbon copy to person C generates three new 
documents (but not necessarily on the same mail 
system). To assist in the task of batching documents, 
we use multiple queues internally, one for each 
unique person. 

A batch of documents is processed in memory 
building a corresponding set of delta vectors used to 
incrementally update the underlying interest profile. 
In our current implementation, a persisted interest 
profile is stored in a relational database, and the 
implementation of the delta vectors allow us to track 
the SQL inserts, deletes, and updates needed to 
incorporate the new set of documents. To ensure 
database consistency, all updates to an interest 
profile are treated as a single transaction.  

Applications access interest profile information 
through a public application programming interface 
(API) in a read-only mode. The API has methods for 
retrieving people and terms ranked by importance, 
and also methods for computing aggregated 
importance scores for documents. Search 
applications can use this functionality to refine 
search results according to personal interest profiles. 

The DIP is implemented as an enterprise 
business component based on the J2EE 
recommended multi-tiered architecture. The four 
tiers in our implementation are, bottom up,  the 
Resource tier housing the data store and data 
accessor classes, the Service tier containing 
Enterprise Java Beans, the Workspace tier 
containing the client side representation of the server 
classes, and the User tier in which DIP clients 
operate. 

4 DISCUSSION 

Our early experiences with testing the DIP have 
been quite encouraging. Even the relatively simple 
versions of our algorithms in the described 
implementation yield quite good results, and 
developing useful applications based on the DIP is 
quite easy. Early tests of DIP technology have led to 
some interesting observations on the use of DIP 
technology. 

It is often the simplest DIP based applications 
that prove the most compelling. For instance: inbox 
sorting and address completion are always a hit at 
demos, while the more complex displays of the 
people associated with important terms receives a 
more muted response.  

Displaying raw DIP results, such as a user’s n 
most important people, is not recommended. Terms 
and people that may be computationally important in 
determining importance may seem “wrong” when 
viewed by the user. For instance, a rare abbreviation 
commonly used by my manager may be valuable in 
discovering document importance, but I would not 
perceive it as a term that is important. We have 
begun research on filtering based on controlled 
vocabularies and ontological information to help in 
the production of DIP results that are more human 
friendly. 

Two of the most compelling DIP based 
applications are the dynamic address book and inbox 
sorting. Our target enterprise collaboration software 
uses the DIP to maintain dynamic address books, i.e. 

Figure 2: High level architecture and 
data flow in the DIP 
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address books that are automatically compiled from 
the most important people as determined by the DIP.  
In addition, the collaboration software allows users 
to search documents and refine the results using 
personal interest profiles. Documents deemed 
important by the DIP are ranked higher, increasing 
the likelihood that users find what they are looking 
for. 

One of the favorite demo applications we 
developed was sorting the user’s inbox by 
importance. The DIP proved to do a wonderful job 
of giving spam and mailing list articles low 
importance and important work communications 
from coworkers and managers high importance. By 
allowing for some adjustment of the weights 
involved the sort could be further refined, sending 
either documents with important topics or by 
important people to the top of the list. We hope to 
perform formal validation of this functionality and 
make it available in products in the future. 

This paper has discussed the concept of Dynamic 
Interest Profiles and the integration of such profiles 
into enterprise collaboration software. As important 
next steps our team plans to: formalize the concepts 
described, perform more validation, and see what 
role standards can play in this area.   

We would like to acknowledge the following 
people for their contributions and support in this 
work: Carl “Pooter” Kraenzel, Mike O’Brien, Kate 
Glickman, Sesha Baratham, Igor Belakovskiy, 
Niklas Heidloff, Gurushyam Hariharan, and Bill 
Cody. 
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