
A RESPONSIBILITY-DRIVEN ARCHITECTURE FOR MOBILE
ENTERPRISE APPLICATIONS

Qusay H. Mahmoud
Department of Computing and Information Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Keywords: Mobile enterprise, mobile architecture, responsibility-driven, WAP, J2ME, mobile services, mobile agents

Abstract: This paper deals with wireless applications that get downloaded, over the air, on handheld wireless devices
(or mobile devices) and get executed there. Once running, they may need to interact with applications
residing on remote wired servers. The motivation for this work is provided in part by the characteristics of
the wireless computing environment. There are several implications of these characteristics that require a
software architecture that reduces the load on the wireless link and supports disconnected operations. We
present a responsibility-driven architecture that enables mobile thin-clients to interact with enterprise
servers. We extend this architecture with mobile agents to reduce the load on the wireless link and support
disconnected operations. The architecture is simple and easy to implement, but also effective, scalable, and
capable of supporting multiple devices.

1 INTRODUCTION

The nature of the wireless Internet will be different
from simply accessing the Internet wirelessly. Users
with mobile devices, being mostly mobile, have
different needs, motivations and capabilities from
wired users. Mobile enterprise applications are
mobile/wireless computing applications and services
that allow the user to access and use existing
enterprise applications from mobile devices. The
explosive growth of the handheld wireless devices
market, however, is stimulating the computing
research community to clone almost any technology
developed for desktop networked computers to
handheld wireless devices connected to a wireless
network. Wireless networks are, however, unreliable
and suffer from low bandwidth and have a greater
tendency for network errors. In addition, wireless
connections can be lost or degraded by mobility.

Several solutions have been proposed and
several technologies have been developed to address
the constraints of mobile devices and the wireless
environment. The solutions and technologies that are
available can be classified into two categories
[Beaulieu, 2002 & Burkhardt et al, 2002]:

Browser-based

This is similar to the current desktop-browser
model where the device is equipped with a browser.

The browser-based approach is used by the Wireless
Application Protocol (WAP).

Native applications

Compiled applications where the device has a
runtime environment to execute them. Sophisticated
wireless services are only possible with this model

Another category is the hybrid application model
that aims to incorporate the best aspects of both
categories above. The browser is used to allow the
user to enter URLs to download native applications
from, and the runtime environment is used to let
these applications run on the device. In this paper we
are concerned with downloadable interactive
applications built using the fast growing Java 2
Micro Edition (J2ME) platform [Sun Microsystems,
2000].

The rest of this paper is organized as follows.
Section 2 provides an overview of the J2ME and its
Mobile Information Devices Profile (MIDP) that
targets cell phones and two-way pagers. Section 3
provides a solution on how J2ME and WAP can be
integrated together providing a useful environment
for the mobile enterprise. The details of the
responsibility-driven architecture are presented and
discussed in Section 4. Finally, concluding remarks
are presented in Section 5.

125
H. Mahmoud Q. (2004).
A RESPONSIBILITY-DRIVEN ARCHITECTURE FOR MOBILE ENTERPRISE APPLICATIONS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 125-129
DOI: 10.5220/0002641001250129
Copyright c© SciTePress

2 J2ME

The Java 2 Micro Edition (J2ME) is aimed at the
consumer and embedded devices market. It
specifically addresses the rapidly growing consumer
space that covers commodities such as cellular
telephones, pagers, palm pilots, set-top boxes, and
other consumer electronics. The J2ME provides a
complete set of solutions for creating state-of-the-art
network applications for consumer and embedded
devices. It enables device manufacturer, service
providers, and application developers to deploy
compelling applications and services to their
customers. The J2ME platform is targeted at two
product groups:

1. Personal, mobile, connected, information

devices, such as cellular phones, two-way
pagers, and organizers.

2. Shared, fixed, connected, information devices,
such as set-top boxes, Internet TVs, and in-car
entertainment and navigation systems.

The Java 2 Micro Edition (J2ME) can be used to

enhance the user experience on mobile devices. It
provides a Java runtime environment for cell
phones, palmtops, and two-way pagers; also
includes libraries and APIs for:

– Programming user interfaces using the Mobile

Information Device Profile (MIDP) [Sun
Microsystems, 2000] user interface API. This
API provides high-level components offering
standard interactions such as lists and forms, and
low-level components for customized look-and-
feel (canvas). This API enables developers to
create highly interactive mobile applications and
flexible user interfaces.

– Storing data persistently on a device using RMS.
Such APIs also enable developers to write
applications (such as mobile games) that work
even when the device is not connected to a
wireless network.

– Establish network connections with remote
servers or other devices using the CLDC Generic
Connection Framework. This API enables
developers to write mobile network-aware thin-
clients that connect to enterprise services using
standard networking protocols such as HTTP.

MIDP implementers are required to provide

support for the HTTP protocol; this is mainly
because HTTP can be implemented on IP-enabled
and non IP-enabled devices. In addition, the HTTP
protocol is firewall-friendly and already has support
for error codes. The HTTP protocol can be easily

used to communicate between mobile clients and
enterprise applications.

3 WAP MIGHT BE DEAD, BUT
WHAT HAVE WE LEARNED?

WAP and MIDP solve similar problems but each
can learn a couple of things from the other. There
are special features that are available in WAP but
not in MIDP and vice versa. Here, we summarize the
important features:

– WAP has support for additional phone

functionality such as setup and integration with
address book. Despite the fact that not all WAP-
enabled devices support this feature, there are no
comparable APIs available for this in MIDP. It is
very likely that this will be possible in a future
version of MIDP.

– MIDP provides a low-level graphics APIs that
enable the programmer to have control over
every pixel of the device's display. This is
important for entertainment applications (such as
games) in a wireless environment. MIDP is the
ideal technology for mobile games. The very
nature of MIDlets (they exist on the device until
they are explicitly removed) allow users to run
them even when the server becomes unavailable
(support for disconnected operations).

– WAP’s Wireless Markup Language (WML)
provides the tags and the possible presentation
attributes, but it doesn't define an interaction
model. For example, WML defines a SELECT
element for providing a list. Some WAP-enabled
devices interpret the SELECT tag as a popup
menu list while others interpret it as a menu that
can be used for navigation. Therefore, there is no
standard interaction model defined for this
element. If a developer uses it, the application
may run well on some devices and poorly on
others. MIDlets, on the other hand, provide a
clearly defined standard for interaction using
commands.

3.1 But a Micro-Browser is Essential

MIDlets combine excellent online and offline
capabilities that are useful for the wireless
environment, which suffers from low bandwidth and
network disconnection. Integrating WAP and MIDP
opens up possibilities for new wireless applications
and over the air distribution models. Therefore,
WAP and MIDP shouldn't be viewed as competing
technologies but rather as complementing ones. If

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

126

you have any experience working with MIDlets, and
more importantly downloading MIDlets on real
physical devices (such as the Motorola/Nextel i85s
cellular phone) then you might be aware that
provisioned MIDlets over the air is still a work in
progress. In order to facilitate over the air
provisioning, there is a need for some kind of an
environment on the handset that allows the user to
enter a URL for a MIDlet Suite, for example. This
environment could very well be a WAP browser as
shown in Figure 2.

Figure 1: Integrating WAP and J2ME

Similar to Java Applets that are integrated in
HTML, MIDlets can be integrated into a WML
page. The WML page can then be called from a
WAP browser and the embedded MIDlet gets
installed on the device. In order to enable this, a
WAP browser (with support for over the air
provisioning) is needed on the device. Another
alternative approach for over the air provisioning of
MIDlets is the use of Short Message Service (SMS)
as has been done by Siemens where the installation
of MIDlets is accomplished by sending a
corresponding SMS. If the SMS message contains a
URL to a Java Descriptor (JAD) file specifying a
MIDlet Suite then the recipient can install the
application simply by confirming the SMS.

4 A RESPONSBILITY-DRIVEN
ARCHITECTURE

Responsibility-Driven design [Wirfs-Brook et al,
2002] is a design approach that emphasizes
behavioral modeling using objects, responsibilities
and collaborations. In a responsibility-based model,
objects play specific roles and occupy well-known
positions in the application architecture. Each object
is accountable for a specific portion of the work.
They collaborate in clearly defined ways,
contracting with each other to fulfil the larger goals
of the application. By creating a "community of
objects", assigning specific responsibilities to each,

we build a collaborative model of our application.
Here objects are service-providers, information
holders, controllers, and interfaces to the outside
world! Each must know and do its part.

The responsibility-driven architecture for wireless
applications makes applications easier to implement,
test, and maintain. This is mainly because each
object provides a specific service and therefore the
separation between responsibilities is clear.

Any architecture for wired/wireless integration
will consist of at least three-tiers. The WAP
architecture, for example, consists of 3-tiers: the
WAP User-Agent (or the client), the WAP Gateway,
and the Web Server that hosts the HTML, WML,
and other server-side scripts. The responsibility-
driven architecture that we propose here consists of
at least three-tiers; a high-level view is shown in
Figure 2. The architecture is simple but yet effective:
the client accesses and uses Java servlets that will in
turn communicate with Enterprise JavaBeans (EJBs)
to manipulate data on behalf of the client. In other
words, the responsibilities in this architecture are
divided as follows: clients (they want to use remote
enterprise applications); middle-tier Java servlets
that act on behalf of the user; and EJBs that
implement the business logic of enterprise
applications. This division of responsibilities makes
mobile applications easier to implement and
maintain. In addition, it would be easy to add other
plug-n-play components that support authentication,
for example.

Figure 2: High-level view of the architecture

Now, let’s look at the components of this
architecture in mode details:

– A mobile client application (based on WAP) or a

MIDlet that provides the user interface and
allows the user to interact with the application.

– The MIDlet communicates with a Java servlet or
JavaServer Page (JSP) over HTTP, or HTTPS if
necessary. Servlets and JSPs act as mediators
between the mobile thin-client and enterprise
applications. A mediator is a service that
functions simultaneously as a server on its front
end and as a client on its backend [Wiederhold,
1992]. It is much like a proxy; however, it
performs some useful processing on the request.

A RESPONSIBILITY-DRIVEN ARCHITECTURE FOR MOBILE ENTERPRISE APPLICATIONS

127

In this model, the client makes a request to the
mediator, which then contacts the original
enterprise service to satisfy a request or invoke a
remote method; the mediator may produce an
XML response which it serves to the client.
Mobile devices can benefit greatly from
mediators. All enterprise applications available
today can be made available to mobile users’
handheld devices through mediators that act as a
middleware between mobile devices and
enterprise applications.

– A servlet receives requests from MIDlets and act
as a client of an EJB component. Based on this
interaction, the servlet generates a response and
sends it back to the client (WAP browser or
MIDlet).

– An EJB component is the application’s business
logic. It provides standard services such as
transactions, security. It allows developers to
concentrate on implementing business logic.

– The servlet and EJB components may use
additional APIs to access enterprise information
and service.

This architecture supports multiple clients. The

client can either be a Java-based application
(MIDlet) running on a Java-enabled device, or an
application running on a browser-enabled device. In
this case, the servlet or JSP page would be able to
present the client with the appropriate reply (WML
content). This really means that while the MIDlet
and the WAP browser need to access different
Servlets and JSP, they would use the same EJB
components for business logic. As a result, this
architecture supports multiple clients without any
impact on the business logic of the application.

This architecture can be implemented using the
J2ME MIDP for the client-side and the J2EE for the
server side. The client-side application of this
architecture can use the classical Model View
Controller (MVC). The model would contain the
data for the application; the view would contain
code for managing data when interacting with the
user; and the controller would look after the logical
flow of the user interface. Figure 2 shows the
interaction between the mobile device and the
central server.

4.1 Client-Server Communication

As we have mentioned above, MIDP prefers the use
of the HTTP protocol for messaging over any other
communication mechanisms such as sockets or
datagrams. As a result, all MIDP-enabled devices
are required to support the HTTP protocol and
therefore any application that uses the HTTP

protocol for messaging would be portable across all
devices. The use of HTTP is actually a good thing
for mobile enterprise applications because many
enterprise servers are separated from mobile clients
by firewalls, and HTTP is a firewall friendly
protocol.
 It may not be reasonable to assume that all
mobile clients within one enterprise will be using the
same servlet. For scalability issues as well as other
issues such as authentication, several servlets can be
deployed and some can be made location-aware so
that different mobile clients would access different
servlets that may be offering the same or different
services.

4.2 Disconnected Operations

The characteristics of the wireless environment,
namely: low bandwidth and greater tendency for
network errors and disconnection call for
mechanism that reduces the load on the wireless link
and supports disconnected operations. One way to
support disconnected operations is through the use
of Java Message Service (JMS), which can be easily
integrated into the architecture.

Mobile Agents [White, 1997] can aid in
providing a reliable technology for message
transport. Mobile agents are well suited for many
applications that are communications-centric such as
processing data over unreliable networks (such as
wireless networks). In such environments, the low
reliability network can be used to transfer agents,
rather than a chunk of data from place to place. In
this scenario, the agent can travel to the nodes on the
network, collect or process information, without the
risk of network disconnection, then return home.

Figure 3: MobiAgent’s BookAgent service

Our responsibility-driven architecture can be
easily extended to support mobile agents as follows:
the mobile device would have an interface agent that
allows the user to access, configure, and dispatch
mobile agents. The interface agent communicates
with a servlet that is responsible for dispatching
mobile agents; such agents can be implemented
using Java Remote Method Invocation (RMI). When
the agent finishes its work, the results are sent back

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

128

to the mobile device (through the servlet); if the
device is disconnected from the network, the results
are saved in the user’s profile and an SMS message
is sent to the user informing her that the results are
available. This strategy has been implemented in the
MobiAgent [Mahmoud, 2002] system architecture.
Figure 3 shows a snapshot of how it works.

4.3 Personalization

In the responsibility-driven architecture, new
modules can be easily added to be responsible for
tasks such as location-awareness and
personalization. Personalization means that only
relevant information should be downloaded to the
mobile devices and then present that information
effectively taking into account the user’s preferences
and history along with the task at hand. In
personalization, however, data is persistent by nature
and therefore this is different from maintaining
session states where data is transient.

Personalization is important in mobile enterprise
applications; as an example consider a login screen
where the user needs to enter a valid user name and
password in order to use an application. Such screen
login doesn’t change from session to session. Thus,
the user should be asked to enter the login
information only once.

Personalization is not without privacy and
security issues, however. An automatic login feature
is one way to improve the user experience and avoid
tedious authentication procedures. Personalization
may require storing data on the device and therefore
special care should be taken to protect its integrity
and confidentiality. As an example, consider the
case where a piece of sensitive information is stored
on the device. It should be ok to automatically send
the sensitive information to the server but not
display it on the screen. If the user wishes to view
such sensitive information, the operation should
require the user to enter a password. This is
important so that if the device is lost and someone
finds it, the sensitive information cannot be retrieved
out of the device.

4.4 Benefits of the Proposed
Architecture

The benefits of this responsibility-driven
architecture can be summarized as follows: First, it
is simple but yet quite effective and easy to
implement using existing technologies; it enables
multiple mobile clients to access enterprise services;
the architecture is transparent as the client is not
aware of the location of the enterprise services; it

provides anytime, anywhere access to enterprise
services; it is based on open industry standards, such
as HTTP and XML; it promotes loose coupling
between mobile thin-clients and enterprise servers; it
is inherently scalable since it is based on proven
scalable architectures such as Servlets; and finally it
is Web services ready: the latest release of the J2EE
(J2EE 1.4) enables developers to expose existing
J2EE enterprise applications as Web services that
would be ready to be consumed by mobile clients.

5 CONCLUSION

In this paper we have discussed the characteristics of
the wireless environment and the technologies that
are available for developing mobile applications. A
responsibility-driven architecture for mobile
enterprise applications was discussed. This
architecture provides a software infrastructure for
accessing enterprise applications from mobile
clients. The architecture is simple yet effective since
responsibilities are divided among its components;
such division makes it easier to develop, test, and
maintain mobile enterprise applications. The
architecture is scalable and capable of handling
growth since it is based on proven scalable server
solutions such as servlets and EJBs. Our future work
includes extending this architecture with mobile
middleware that will play a crucial role in mobile
enterprise computing and mobile commerce
systems.

REFERENCES

Beaulieu, M., 2002. Wireless Internet Applications and
Architecture. Addison-Wesley.

Burkhardt, J., Henn, H., Hepper, S., Rintdorff, K., 2002.
Pervasive Computing Technology and Architecture of
Mobile Internet Applications. Addison-Wesley.

Mahmoud, Q.H., 2002. An Agent-based Approach to the
Wireless Internet. In Journal of Internet Technology,
Vol. 3, No. 2, pp. 153 – 158.

Sun Microsystems Inc., (J2ME), 2000:
 http://java.sun.com/j2me
White, J., 1997. Mobile Agents. In Bradshaw, J.M. (ed.),

Software Agents, AAAI/MIT Press, pp. 437-472.
Wiederhold, G., 1992. Mediators in the Architecture of

Future Information Systems. In IEEE Computer, 25(3),
pp. 38-48.

Wirfs-Brook, R., McKean, A., 2002. Object Design:
Roles, Responsibilities, and Collaborations. Addison-
Wesley.

A RESPONSIBILITY-DRIVEN ARCHITECTURE FOR MOBILE ENTERPRISE APPLICATIONS

129

