MODEL-BASED COLLABORATIVE FILTERING FOR TEAM BUILDING SUPPORT

Miguel Veloso
Enabler – Solutions for Retailing, Av. da Boavista, 1223, 4100-130 Porto - Portugal, miguel.veloso@enabler.com,

Alípio Jorge
Faculdade de Economia, Laboratório de Inteligência Artificial e Ciência de Computadores, Universidade do Porto, R. do Campo Alegre, 823, 4150-018 Porto, Portugal

Paulo J. Azevedo
Universidade do Minho, Departamento de Informática, Campus de Gualtar, Braga, Portugal

Keywords: Data Mining, Collaborative Filtering, Recommender Systems, Association Rules, Team Building

Abstract: In this paper we describe an application of recommender systems to team building in a company or organization. The recommender system uses a collaborative filtering model based approach. Recommender models are sets of association rules extracted from the activity log of employees assigned to projects or tasks. Recommendation is performed at two levels: first by recommending a single team element given a partially built team; and second by recommending changes to a completed team. The methodology is applied to a case study with real data. The results are evaluated through experimental tests and one survey to potential users.

1 INTRODUCTION

The task of recommending something or someone is very common in everyday life (Resnick et al. 1997). This happens very often in communities, such as consumers, users of a given Web site, or a group of friends. If someone knows your preferences, can recommend you a new Web site that believes you will find of interest, or filter out another one that you would dislike. The task of making recommendations in a particular domain can be partially automated by a recommender system, also known as a filtering system, using data mining techniques.

In this work we show how a recommender system can be used for supporting managers in setting up a team for a given activity or project in a company. From the activity log of employees (resources) assigned to other projects in the past, we build recommender models based on association rules. Such rules can be built using standard data mining techniques.

In the following sections we will review the concept of recommender systems and association rules, and then describe the problem of team building, as well as our approach. We apply the proposed method to real data from a company, and evaluate the results empirically and through a survey on users’ perception.

2 RECOMMENDER SYSTEMS

There are basically two strategies for automatically generating recommendations: content-based and collaborative. In content-based filtering, an item is recommended or not, given its description or content. This is the case if you recommend a Web site about planet Mars to someone who likes astronomy, because you know what the site is about.

In collaborative filtering (Goldberg et al. 1992), we do not need to look into the content of the items. In this case, you recommend a Web site about planet Mars to someone who likes astronomy, because you know what the site is about.

In collaborative filtering (Goldberg et al. 1992), we do not need to look into the content of the items. In this case, recommender systems are built on the assumption that a good way to find interesting content is to find other people who have similar interests and then recommend items that those similar users like (Breese et al. 1998). This makes the verifiable assumption that human preferences are correlated (Pennock et al. 2000). In this case you...
would recommend the Web site on planet Mars to someone that enjoyed the site on the Hubble telescope, not because you know these two sites are about related issues, but because you know of other people who have enjoyed both of them.

Recommender Systems can therefore be very relevant in a number of business applications, especially for increasing the number of transactions (Sarwar et al. 2001) and improving the satisfaction of users. In this paper we describe an application of a collaborative recommender system for supporting project managers in choosing team members.

A collaborative filtering recommender system works as follows. Given a set of transactions D, where each transaction T is of the form $<id, item, rating>$, a recommender model M is produced. Each item is represented by a categorical value while the rating is a numerical value in a given scale (e.g. each item is a movie rated with 1 to 5 stars). Such a model M can produce a list of top-N recommended items, and corresponding predicted ratings, from a given set of known ratings (Sarwar et al. 2001). In many situations, ratings are not explicit. For example, if we want to recommend Web pages to a Web site visitor, we can use the set of pages he or she visited, assigning an implicit rate of one to those, and zero to all the other.

In terms of collaborative filtering two major classes of algorithms exist (Breese et al. 1998, Sarwar et al. 2001):

- **Memory-based**: the whole set of transactions is stored and is used as the recommender model. These systems employ a notion of distance to find a set of users, known as neighbours that tend to agree with the target user. The preferences of neighbours are then combined to produce a prediction or top-N recommendation for the active user.

- **Model-based** approaches build a model, such as decision trees or rules, from data, which is then used for predictions. The model can be built using machine learning (Mitchell 1997) or data mining (Hand et al. 2001) algorithms such as rule-based approaches.

(Pennock et al. 2000) proposed a hybrid between memory- and model-based approaches.

Some variants of the basic recommendation approaches have been suggested. Sarwar et al. (2001) explore the similarities between items rather than users. Wei et al. (2003) employ multiple recommendation methods. To this purpose, a system was developed to coordinate the output of the different methods such that only the best recommendations were presented to the user.

Recommender systems have been applied in many domains (e.g., Amazon.com recommends books and CDs) (Wei et al. 2003). In (Jorge et al. 2002) they were applied to build a model-based recommender system, based on association rules, with the objective of improving the usability of a web site. Such a system can produce recommendations (links to other web pages) to each user, on the fly, as she or he traverses the site, according to the pages the user visits in a given session.

3 ASSOCIATION RULES

In brief, an association rule is an expression $A \Rightarrow B$, where A and B are sets of items. The meaning of such rules is quite intuitive: given a database D of transactions – where each transaction $T \in D$ is a set of items –, $A \Rightarrow B$ expresses that whenever a transaction T contains A than T probably contains B. This probability is known as rule confidence and is defined as the percentage of transactions containing B and A relatively to the overall number of transactions containing A. In other words, the rule confidence estimates the conditional probability $Pr(B|A)$. The support of the rule is the number of transactions that contain all elements in $A \cup B$. The standard algorithm for discovering association rules from a database of transactions is **APRIORI** (Agrawal et al. 1994). The idea of mining association rules originates from the analysis of market-basket data where rules like “A customer who buys products x_1 and x_2 also buys product y with probability $c\%$.” are found. Nevertheless, association rules are not restricted to dependency analysis in the context of retail applications, but are successfully applicable to a wide range of business problems (Hipp et al. 2000).

A recommendation model M based on association rules corresponds to the set of association rules generated from the user preference data (Jorge et al. 2002). Given a set of observed items O, the set of recommendations R provided by M can be computed using:

$$ R = \{\text{consequent}(r) \mid r \in M \text{ and antecedent}(r) \subseteq O \text{ and consequent}(r) \subseteq O \} $$

(1)
If we want the N best recommendations ($top-N$), we select from R the N recommendations corresponding to the rules with the highest confidence values. Another example of a recommendation system based in association rules was presented in (Sarwar et al. 2000).

4 TEAM BUILDING

Team building and planning is a very important activity for companies whose structure is organized in projects. In such a case, each sale of the company is accomplished through a project during a certain period. The project has a number of company’s employees (resources) working on it. Each resource can be assigned to more than one project simultaneously.

Team building is a complex problem because it requires the manipulation of a huge amount of variables: personal and technical characteristics of the (human) resources of the company, as well as their availability; customer characteristics; project characteristics; among others. Therefore, there are a lot of generic challenges for those who have the responsibility of doing this kind of activities:

- Where is it possible to find, implicitly or explicitly, the necessary information to perform the team building and planning activity?
- How should this information be organized in order to facilitate its access?
- Due to the dynamic and permanent growing of companies, is it possible to concentrate this information in some key resources? What if these resources leave the company?
- Is it possible to get a second opinion about the choices made?
- Is it possible to get an advice or a recommendation to make a choice of this kind?

The company dimension, the number of resources and the number and diversity of the projects, has an obvious impact on the difficulty of these challenges.

Let’s concentrate on the activity of human resources in every company project, every day. We treat resources as items, and each day of a project as a transaction (or basket) (Figure 1 shows the similarity with the analysis of market-basket data).

From these baskets it is possible to build a set of association rules $A \Rightarrow B$ with support $s\%$ and confidence $c\%$, with this meaning: if the resource A works in one project / day, then B has a $c\%$ probability to work in that same project / day.

Our working assumption is that the history of the resources activity in every company project, every day, implicitly contains the necessary knowledge to perform the team building and planning activity. In other words, such historical data can be analyzed to unearth the past criteria used to perform the resource selections (personal and technical resource profiles, resource availability, project objectives and characteristics, project success achievements and customer characteristics). The set of association rules should retain this implicit knowledge.

From the activity data we build a model-based recommender system, based on association rules, with the aim of supporting the team building and planning process. This system receives a set of resources as input and outputs a resource recommendation. The overall architecture is illustrated in Figure 2.

From this functionality – Resource Recommendation – we can build another one: Resource Team Recommendation. Basically we can describe it like this: given the resource team $\{a_1, a_2, ..., a_n\}$ as input, this functionality recommends another team, with the same number of resources, changing one single resource a_i by another one $- b$ - that this system considers more appropriate (according to the rules found from the activity data). This new resource b has the same technical characteristics as a_i. For example: given the resource team $\{x, y, z\}$, this functionality could recommend the new team $\{x, k, z\}$ where k has the same technical characteristics of y.

The aim of this new functionality is to give the manager in charge of the team building task an opportunity to improve one resource team previously built.

The team recommendation algorithm (Veloso, M. 2003) assumes that the resources are characterized...
by a career level, which roughly corresponds to their level of expertise, and by a resource pool – that contains the set of resources with specific technical competences, such as “information systems”, “marketing”, and so on. Recommended replacements must satisfy the restriction that the career level and the resource pool must be the same of the replaced element.

Team_Recommendation(e)
/* e = \{r_1, ..., r_n\} – team that we want to optimize */

 for each sub team e_i,
 /* e_i is a sub team of e with size = ([size of e] - 1), by taking out the resource r_i */
 generate all resource recommendations given e_i,
 choose the best of these recommendations, from the same resource level and from the same resource pool as r_i,
 /* the best recommendation corresponds to the rule with the highest confidence */
 among the [size of e] recommendations selected on the previous cycle, chose the one with the highest confidence
 recommend the team formed by the e_i sub team that has originated the recommendation selected on the previous step, and the associated recommendation

This algorithm can be iterated, and produce more than one replacement on the initial team.

5 EMPIRICAL RESULTS

These concepts have been applied to real data from a systems integrator company: Enabler – Solutions for Retailing\(^1\). This company belongs to SONAE economic group and its main activity is to sell Information Technology projects for retailers operating in the European Union and Brazil.

Enabler uses a software application – Service Sphere from Evolve\(^2\) - to log time spent on projects (time reports). Every Enabler resource must log its own time report every week for control and management purposes. These time reports store information about the resource activity in the various company projects - they represent the history of resources activity mentioned in the previous section.

The time report data was loaded into a MySQL\(^3\) database. Then, to create the set of association rules we used CAREN (Azevedo 2003). The recommender models were implemented in R\(^4\), a statistical environment and programming language (Ihaka and Gentleman, 1996).

To evaluate empirically the resource recommendation models generated, we split randomly the baskets into train and test sets (we chose an 80% / 20% split). The training set is used to generate the recommendation model. From each basket in the test set we randomly delete one resource. The set of deleted resources is called the hidden set (Hidden). The set of baskets with the remaining resources is called the observable set (Observable). Breese et al. (1998) named this evaluation set-up procedure the All But One Protocol.

One recommender model is evaluated by comparing the set of N recommendations it makes (Rec), given the Observable set, against the resources in the Hidden set (Figure 3).

Several types of quality measures have been proposed for evaluating a recommender system. We have adopted measures typically used for information retrieval tasks namely recall, precision and F1 (van Rijsbergen 1979). These measures are also common for the evaluation of recommender systems (Breese et al. 1998), (Sarwar et al. 2000), (Jorge et al. 2002).

Recall is a global measure for the whole set of baskets in the test set. It corresponds to the proportion of relevant recommendations that have

\(^1\) www.enabler.com
\(^2\) www.evolve.com
\(^3\) www.mysql.com
\(^4\) www.r-project.org
been retrieved by the system, i.e., the proportion of resources in the hidden set that are adequately recommended. The value of recall tends to increase with \(N \), the number of recommendations made for a single team.

\[
Recall = \frac{|\text{Hidden} \cap \text{Rec}|}{|\text{Hidden}|}
\]

Precision gives us the average quality of an individual recommendation. As \(N \) increases, the quality of each recommendation decreases.

\[
Precision = \frac{|\text{Hidden} \cap \text{Rec}|}{|\text{Rec}|}
\]

F1 has been suggested as a measure that combines recall and precision with equal weights. It ranges from 0 to 1 and higher values indicate a more balanced combination between recall and precision. It is useful as a summary of the other two measures.

\[
F1 = \frac{2 \times \text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}}
\]

The data used in these experiments refer to the period between September 2001 and November 2002. For this period we have 290 resources and 26234 baskets. The average number of resources per basket is 2.68. With the train and test split we got 20987 baskets for train set and 5247 baskets for test set.

To build the set of association rules we tried different combinations of minimum support and minimum confidence. Table 1 shows the results for recall, precision and F1, for different \(N \) values. The best results for recall were achieved with minimum support = 0.003 and with minimum confidence = 0.1. For these parameters, the number of rules in the model was 8957.

Recall is around 15% when only one recommendation is made (\(N = 1 \)) – this means that we are able to retrieve 15% of the relevant recommendations. In this case, precision is higher (0.287) because a recommendation is not made when no rule applies. The recommender model recall value is 49 times higher than the resource random guess (Rnd column). These random values were obtained by dividing \(N \) by the total number of resources (290).

We have also compared the predictive accuracy of our model with the default recommendations (the most likely resources *a priori*). When \(N = 1 \), the default recommendation for every basket in the observable set is the resource with the highest support in the training set; when \(N = 2 \), the default recommendations for every basket in the observable set are the two resources with the highest support in the train set, and so on. In Figure 5 we can see the comparison of recall values between our model and default recommendations, for different \(N \) values.

In the case of precision, it drops smoothly as the number of recommendations \(N \) increases, as it was expected. When \(N = 1 \) each one the collaborative filtering recommendations made has a 28.7% chance of being relevant. In Figure 6 we can see the comparison of precision values between our model and default recommendations, for different \(N \) values.

The F1 measure indicates that the best combination of recall and precision is achieved when \(N = 2 \). This can be used if we want to give the team manager a list of recommendations with a good balance between recall and precision.

Table 1: Results for recall, precision and F1, for different \(N \) values. Recall values for random guess (Rnd), as well as recall and precision for default guess are also shown.

<table>
<thead>
<tr>
<th>(N)</th>
<th>Recall, minsup=0.003, minconf=0.1</th>
<th>Recall, minsup=0.005, minconf=0.5</th>
<th>Recall, minsup=0.003, minconf=0.5</th>
<th>Recall, minsup=0.005, minconf=0.5</th>
<th>(Recall) Rnd</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.147</td>
<td>0.247</td>
<td>0.147</td>
<td>0.247</td>
<td>0.094</td>
<td>0.270</td>
</tr>
<tr>
<td>2</td>
<td>0.194</td>
<td>0.247</td>
<td>0.231</td>
<td>0.282</td>
<td>0.151</td>
<td>0.282</td>
</tr>
<tr>
<td>3</td>
<td>0.217</td>
<td>0.184</td>
<td>0.168</td>
<td>0.192</td>
<td>0.151</td>
<td>0.184</td>
</tr>
<tr>
<td>5</td>
<td>0.263</td>
<td>0.184</td>
<td>0.149</td>
<td>0.184</td>
<td>0.151</td>
<td>0.149</td>
</tr>
<tr>
<td>10</td>
<td>0.271</td>
<td>0.149</td>
<td>0.124</td>
<td>0.149</td>
<td>0.151</td>
<td>0.124</td>
</tr>
<tr>
<td>20</td>
<td>0.273</td>
<td>0.149</td>
<td>0.114</td>
<td>0.149</td>
<td>0.151</td>
<td>0.114</td>
</tr>
</tbody>
</table>
Since many of the baskets in the data set have one resource only, it is relevant to know how does the predictive performance of the model change when such baskets are not taken into account for model evaluation. This makes sense because when a basket with one resource only is used for testing, that single resource is hidden and the model makes a recommendation on the basis of no information. This is unrealistic, since we do not expect the resource recommender system to be used under such conditions.

To do this we discarded baskets with only one resource and obtained new values for recall, precision and F1. These results are showed on Table 2. As we can observe, recall values increase visibly under these more realistic conditions (for N = 5, for example, recall is about 42%).

Table 2: Results for recall, precision and F1, for different N values, when baskets with only one resource are discarded. Recall values for random guess (RND), as well as recall and precision for default guess are also shown

<table>
<thead>
<tr>
<th>N</th>
<th>minsup=0,003</th>
<th>minconf=0,1</th>
<th>(Recall)</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall</td>
<td>Prec</td>
<td>F1</td>
<td>Recall</td>
</tr>
<tr>
<td></td>
<td>RND</td>
<td>Default</td>
<td></td>
<td>Recall</td>
</tr>
<tr>
<td>1</td>
<td>0.255</td>
<td>0.287</td>
<td>0.270</td>
<td>0.003</td>
</tr>
<tr>
<td>2</td>
<td>0.338</td>
<td>0.288</td>
<td>0.267</td>
<td>0.007</td>
</tr>
<tr>
<td>3</td>
<td>0.378</td>
<td>0.168</td>
<td>0.121</td>
<td>0.010</td>
</tr>
<tr>
<td>5</td>
<td>0.416</td>
<td>0.122</td>
<td>0.103</td>
<td>0.011</td>
</tr>
<tr>
<td>10</td>
<td>0.455</td>
<td>0.095</td>
<td>0.104</td>
<td>0.014</td>
</tr>
<tr>
<td>20</td>
<td>0.474</td>
<td>0.076</td>
<td>0.134</td>
<td>0.069</td>
</tr>
</tbody>
</table>

We should also point out that this experimental evaluation procedure can be pessimistic in many situations since recall and precision measures only consider as correct the recommendations that exactly match the hidden one. The fact that a recommendation is not exact, does not mean that it is not adequate. Consider the following example: suppose we hide for testing the resource c from the basket with resources \{a, b, c\}. Therefore \{a, b\} is the observable basket and \{c\} is the hidden basket. If we apply the resource recommendation functionality to the observable basket and if it recommends the resource d, this mean that this recommendation will not contribute positively to the recall value (due to the fact that |\{c\} \cap \{d\}| = 0). But this does not mean that \{d\} is not an adequate recommendation for the \{a, b\} team.

For that reason, we decided to confront the decisions made by our collaborative filtering recommender model to its potential users.

6 USERS’ PERCEPTION

For further evaluation of the system, we conducted a survey to study the perception of its potential users regarding the adequacy of the recommendations made. We used a sample of 17 resources (among a universe of 56 potential users of this system).

The survey was divided into two parts (corresponding to the two functionalities of this system):

- **Resource recommendations** – 6 randomly generated resource teams were presented. For each of them it was applied the resource recommendation functionality. We then asked the sampled resources to express their perception about the adequacy level of the recommendations made.

- **Resource team recommendations** - 6 randomly generated resource teams were presented. For each one of them it was applied the resource team recommendation functionality. We then collected the opinions about the adequacy of the recommendations presented.

The adequacy level was measured according to the following scale:
1 – Very Inadequate.
2 – Inadequate.
3 – Neither Inadequate, Nor Adequate
4 – Adequate.
5 – Very adequate.

The survey results were compiled in order to obtain the average level of the adequacy perception. We also show a 95% confidence interval for the population means:

Table 3: Users’ perception survey compiled final results show the average opinion of the users about the adequacy of recommendations. The limits of the 95% confidence interval are also shown

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Recommendation</td>
<td>3.31</td>
<td>3.03–3.59</td>
</tr>
<tr>
<td>Team Recommendation</td>
<td>3.80</td>
<td>3.59–4.02</td>
</tr>
</tbody>
</table>

With these results we can conclude, with a 95% confidence, that the potential users of this recommendation system have an average positive perception of the adequacy of the recommendations made, especially for the team recommendation facility.

7 CONCLUSIONS

We proposed a new method to support the team building and planning process in a company or organization. To implement this method we developed a model-based recommendation system, based on association rules built on operational data about the resources real activity. The choice of association rules follows the assumption that this data implicitly store relevant knowledge for this building and planning process; as well as the assumption that the set of association rules found are able to represent that knowledge.

With this system it is possible to get a second opinion about a resource choice previously made and it is also possible to get an advice, or a recommendation, to perform a choice of this kind.

The experimental results, as well as the analysis of the users’ perception showed this approach has a positive impact on the team building task.

This kind of system can be implemented in any organization that stores information about the real resource activity. In the case of the organization that provided the data the process of information collection does not represent any extra cost since it had been done previously for management control purposes.

The company dependency on some key resources that usually concentrate a lot of information necessary to perform team building and planning activities could be minimized with a system with these characteristics.

We demonstrate the applicability of association rules and collaborative filtering recommender systems in a different domain: team building and planning.

Our approach could be improved by allowing the manager the specification of more constraints to the recommender system, in addition to the career level and resource pool constraints. One useful feature would be the special treatment of new resources that do not appear in historical data.

ACKNOWLEDGEMENTS

We would like to thank to Jorge Brás (CEO Enabler Portugal) for his permission to use Enabler real data in this paper. A special thanks to Jorge Santos and José Ribas (Enabler Portugal Competency Centre Managers) for all their support. And, finally, a very big thanks to the Enabler staff that kindly participated on the survey that was presented.

This work has been supported by the POSI/SRI/39630/2001/Class Project (Fundação Ciência e Tecnologia), FEDER e Programa de Financiamento Plurianual de Unidades de I & D.

REFERENCES

