
FROM CORBA TO WEB SERVICES COMPOSITION 

Denivaldo Lopes1,2 and Slimane Hammoudi2 
1,2Université de Nantes, Nantes, France 

2 Ecole Supérieure d’Electronique de l’Ouest- ESEO, Angers, France 

Keywords: Web Service Composition, Transaction, Workflow and CORBA 

Abstract: CORBA has some positive aspects to develop applications, but its communication model is limited to 
accomplish interactions among clients and enterprise servers on the Web. The technologies of Web Service   
seem to offer a better answer for developing distributed applications on the Web. The first part of this paper 
is a discussion about the evolution of CORBA and of Web Services, showing their benefits and limitations. 
The new solutions provided by the technologies of Web Services (XML, WSDL, UDDI and SOAP) are 
more adapted for the Web than CORBA. However, these technologies are not sufficient to compose Web 
Services, which represents a real challenge. Workflow Technology seems to be a better answer for this 
challenge. The second part of this paper deals with this integration of Workflow technology and Web 
service that is designed in WEWS. An approach for transaction based on conversation plus optimistic 
commit protocol is also presented. A comparison of our work and other propositions is provided too, 
highlighting similarities and differences. 

1 INTRODUCTION 

In the last decade, people thought that Distributed 
Object Technology (DOT) could be the solution for 
the development of wide-scale distributed systems 
on the Web* (Harkey, 1998), (Northrop, 1997).  
DOT can encapsulate the software components in 
different levels of detail and makes possible the 
inter-process communication in a transparent way.  
This is realized through utilization of middleware, 
i.e. a software tier among hardware, operating 
systems and applications. It provides homogeneity 
of development for heterogeneous platforms. The 
OMG’s Common Object Request Broker 
Architecture (CORBA) (OMG, 2001), Microsoft’s 
Distributed Component Object Model (DCOM) (it is 
implemented only for Windows) and Sun’s Java 
Remote Method Interface (RMI) are the 
fundamental examples of middleware. Amongst 
these, CORBA is a specification for general 
distributed system architecture and was the major 
element to support the utilization of DOT. But 
CORBA has problems, e.g. it is complex, it requires 
specialized training and it has a high cost for 
development. 

In the last years, a set of technologies based on 
XML has been developed to facilitate the 

development of applications on Web, i.e. SOAP, 
UDDI and WSDL.  These technologies have 
resulted in the creation of Web Services that are 
Web applications that interact with other Web 
applications using these open standards. 

However, this set of technologies is limited and 
it cannot meet all the requirements in Web services 
development, i.e. reliability, transactions, security, 
scalability, accountability and management (Zhang, 
2001), (Tsur, 2001). Moreover, these technologies 
are not sufficient to allow service composition. In 
this paper, we suggest an integration of Web 
Services and Workflow to meet several of these 
requirements and take into account service 
composition. 

This paper is organized as follows. Section 2 is a 
discussion about CORBA and Web Services, 
detaching their benefits, limitations, similarities and 
differences. Section 3 presents some modification on 
WSFL to better compose Web Services.  Section 4 is 
our proposal to enable transactions in the context of 
Web Services. Section 5 is a discussion about the 
architecture of Workflow Environment for Web 
Services (WEWS) to support the composition of 
Web Services and transaction. Section 6 shows the 
comparison among WEWS and other frameworks. 
The last section is the conclusion about our work.  

* In this paper, we use the word Web to make reference 
to the Internet (i.e. the large network) and to the Web 
(i.e. an Internet service). 

114
Lopes D. and Hammoudi S. (2004).
FROM CORBA TO WEB SERVICES COMPOSITION.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 114-121
DOI: 10.5220/0002635901140121
Copyright c© SciTePress



 

2 CORBA AND WEB SERVICES 

In the DOT context, Web objects (e.g. ORBlets) 
were the major approach of CORBA on the Web, 
because they would stimulate the adoption and fast 
development of applications on the Web (Harkey, 
1998). However, these events did not happen 
because the standardization of the Internet Inter-
ORB Protocol (IIOP) had a long delay (OMG, 
2001). Moreover, the submission for IIOP firewall 
traversal is not a consistent standard yet, and the 
integration of CORBA/IIOP with Netscape browser 
and server was not well accepted in industrial 
circles. 

The frustrations with CORBA have modified the 
vision of many enterprises about the future of 
distributed systems on the Web. 

The set of technologies formed of eXtensible 
Markup Language (XML), Simple Object Access 
Protocol (SOAP) (W3C, 2001a), Web Services 
Description Language (WSDL) (W3C, 2001b) and 
Universal Description, Discovery and Integration 
(UDDI) (UDDI Project, 2000) is being accepted for 
the development of the next generation of 
applications on the Web. 

2.1 CORBA and Object Technology 

CORBA is the best example of DOT, although their 
benefits have not yet been totally explored.  Many 
services and facilities designed for it are not very 
well standardized or implemented. Its qualities are 
unquestionable, e.g. portability and interoperability 
across heterogeneous platforms  (language, 
operating system, hardware and other Object 
Request Brokers-ORBs), transparency, real time 
specification, uniform error detection, adapted to 
wrap legacy applications and uniform security 
mechanism (SAS) (Northrop, 1997), (OMG, 2001). 

2.2 The CORBA Stack 

CORBA can be seen as a stack composed of 
Interface Definition Language (IDL), CORBA 
Services, Stubs/Skeletons, Common Data 
Representation (CDR) and GIOP/IIOP (OMG, 
2001), (OMG, 2000). 

IDL is used to describe the interfaces that allow 
client objects to call up the remote object 
implementations. In other words, it defines a 
contract between client and server. 

CORBA Services define a set of services, e.g. 
Trading Object, Security and Transaction.  Among 
these services, we draw attention to the Trading 
Object Service that enables a service provider to 

register the description of a service and the location 
of an interface on the trader.  Afterwards, the 
requester asks for a service with characteristics 
which are specific to the trader. The trader receives 
the requisition, searches for a suitable service object 
based on the described characteristics and responds 
to the requester passing the location of selected 
service’s interface (OMG, 2000). 

The client object uses the stubs to access a 
specific object implementation. The client Stubs are 
created from the IDL description to make access to a 
service operations and data possible. The stubs make 
calls on the ORB using interfaces that are private or 
optimized to a particular ORB. The object 
implementation uses the skeletons as an adapter to 
make its operations and data available.  The ORB 
calls the operations and has access to data on object 
implementation through the skeleton. 

Common Data Representation (CDR) is a 
transfer syntax definition that maps OMG IDL data 
types into a bi-canonical and low-level 
representation (i.e. an octet stream) for transfer 
between ORBs and Inter-ORB bridges. In other 
words, it implements an Electronic Data Interchange 
(EDI). 

General Inter-ORB Protocol (GIOP) is a low-
level protocol that specifies standard transfer syntax 
and a set of message formats to enable 
communication between ORBs.  The Internet Inter-
ORB Protocol (IIOP) defines how GIOP messages 
are exchanged using TPC/IP connections on the 
Internet. 

2.3 Web Services 

Web Services can be seen as an evolution of the 
Web based on lessons learned in past decades with 
middleware (including CORBA) and markup 
languages (e.g. XML).  

The main characteristics of Web Services are 
independence of platform (language, operating 
system and hardware), a world-wide scenario for 
transactions, the utilization of multiple transport 
protocol (HTTP, SMTP or FTP), the message 
encoded in XML, friendly behavior with firewall, 
easily adaptable with legacy systems, and the 
localization as Uniform Resource Identifier (URI). 

2.3.1The Web Services Stack 

The Web Services stack is composed of WSDL, 
UDDI, SOAP, XML and HTTP (or SMTP or FTP). 

WSDL is an abstract definition based on XML 
grammar to describe the syntax and semantics 
necessary to call a service (W3C, 2001b). This 

FROM CORBA TO WEB SERVICES COMPOSITION

115



 

abstraction is utilized to build an invocation on a 
service that is often implemented with SOAP. 

UDDI is the universal registry for Web Services 
and its core is based on XML files that may store 
information about a business entity and its Web 
Services.  It is similar to white pages (to find a 
service by contact, name and address), yellow pages 
(to find a service by topic based in standard 
taxonomies) and green pages (to find a service by 
technical characteristic) (UDDI Project, 2000).  

SOAP is a protocol based on XML and it is used 
to exchange information in decentralized and 
distributed systems (W3C, 2001a). 

XML is an extensible markup language that has 
been used for documents and data representation. In 
other words, it resolves the problem of Electronic 
Data Interchange (EDI) and it can be rapidly 
modified to address new types or requirements. 

One advantage of Web Services is the possibility 
to use multiple protocols to transport the request and 
response, e.g. Hypertext Transfer Protocol  (HTTP), 
Simple Mail Transfer Protocol (SMTP) and File 
Transfer Protocol (FTP).  

The concepts around Web Services are not new. 
CORBA promised a structure that would make it 
possible to build services (as components), to 
publish services, to find services and to bind these 
services; in other words, it would make possible the 
reutilization of a component by other components. 
This notion is present in the Trading Object Service 
designed for CORBA (OMG, 2000) and   developed 
by PrismeTech’s OpenFusion software 
(www.prismtechnologies.com).  However, CORBA 
is not sufficiently loose-coupled to implement final 
applications on the Web. Table 1 shows the CORBA 
and Web Services stack. 

 
Table 1: CORBA and Web Services Stack 

Stack 
CORBA Web Services 

IDL WSDL 
CORBA Services UDDI 
Stubs/Skeletons SOAP 

CDR XML 
GIOP/IIOP HTTP (or SMTP, FTP) 

 
Analyzing the CORBA and the Web Services 

stacks, we come to the conclusion that together they 
can be used to provide a powerful set of 
technologies to cover a vast scope of domains. In 
(Gokhale, 2002), the authors have demonstrated that 
the combination of CORBA and Web Services 
brings some benefits. 

In fact, applications for the Web can be 
implemented with Web Service technologies or with 
CORBA technology; the difference will be observed 
in the efforts to develop the desired service. In other 

words, the enterprise will be free to choose what 
technology is more suitable. For example, software 
that demands high performance, persistency, notion 
of object and stable QoS will still be constructed 
with CORBA and IIOP.  It is important to observe 
that any software developed in CORBA can be 
developed using Web Services technologies, and 
vice-versa.  In order to choose which technology is 
suitable, it is necessary to know the characteristics of 
the problem. Recently, there has been a consensus 
that Web Service is more adapted to Internet, and 
CORBA is more adapted to Intranets.  

3 WORKFLOW AND WEB 
SERVICES 

Organizations have been concerned with the 
improvement of the quality of their processes.  
Therefore, the interest for workflow technology has 
increased significantly in the industrial and 
academic fields. A workflow is defined as an 
organized collection of tasks to perform a business 
process (WfMC, 2002a). A Workflow Management 
System (WFMS) is a set of tools implementing 
techniques that allow the definition, management 
and execution of workflows (WfMC, 2002a).   

Recently, the use of workflow to compose 
services has been explored and developed by 
industrial and academic laboratories  (Dayal, 2001), 
(Helal, 2002). These efforts have resulted in the 
creation of workflow languages and meta-models to 
describe the Web Service composition, e.g. Web 
Services Flow Language (WSFL) (Leymann, 2001) 
and Workflow Process Definition Interface (WfMC, 
2002b). 

3.1 A modified WSFL 

WSFL is an XML language designed to compose 
Web Services.  With WSFL, it is possible to 
describe how to achieve a particular business goal 
(i.e. business process) and the interaction of a 
collection of Web Services (i.e. partner interactions). 

In WSFL, a Web Services composition consists 
of the description of the use of functionalities 
provided by the set of composite Web Services.  The 
composite Web Services will be executed following 
a flow model used to describe the execution order. A 
workflow engine based on Web Services executes 
this flow model. Afterwards, the global models are 
used to describe how Web Services interact with 
each other. 

In (van der Aalst, 2003), the authors present the 
patterns for Workflow and compare them with some 

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

116



 

languages of service composition, including WSFL. 
According to this work, WSFL has the following 
patterns: sequence; parallel split; synchronization; 
exclusive choice; simple merge; multiple choice; 
synchronization merge; implicit termination; MI 
without synchronization; MI with a priori design 
time; cancel activity; and cancel case. 

We have extended WSFL with the following 
patterns: multiple merge and discriminator. 

The fragment of WSFL schema presented in the 
figure 1 illustrates the patterns introduced in WSFL. 
<complexType name= “multimergeType”> 
 <attribute name= “condition” type= “wsfl:NCNameList” 
                   use= “required”/> 
 <attribute name= “when” type= “wsfl:whenType” 
                     use= “default” value= “deferred”/> 
</complexType> 
… 
<complexType name= “discriminatorType”> 
 <attribute name= “condition” type= “wsfl:NCNameList” 
                    use= “required”/> 
 <attribute name= “when” type= “wsfl:whenType” 
                     use= “default” value= “deferred”/> 
</complexType> 
… 
<complexType name= “activityType”> 
 <complexContent> 
  <extension base=”wsdl:operationType”> 
   … 
   <element name=”multimerge”                    
           type=”wsfl:mutimegeType”    minOccurs=”0”/> 
   <element name=”discriminator”                    
           type=”wsfl:discriminatorType” minOccurs=”0”/> 
  </extension>  
 </complexContent> 
</complexType> 

Figure 1: The extension of WSFL schema. 

4 TRANSACTION FOR WEB 
SERVICES 

The joining of transactions and Workflow concepts 
provides a powerful mechanism for the management 
of e-business. However, the traditional models of 
transactions are not sufficient for the context of the 
Web. A service transaction cannot be seen as a 
single ACID transaction (i.e. Atomicity, 
Consistency, Isolation and Durability). In order to 
implement transactions suited with the Web Services 
context, we assume a transaction model based on 
conversation plus optimistic commit protocol that 
uses transaction compensation (Ouyang, 2001). 
Conversations are sequences of interactions between 
multiple Web services that enable the conversational 
transaction.  In this context, a transaction that has 
sub transactions aborted is able to create a new sub 
transaction, instead of direct use of all-or-nothing 
semantics. 

Our transaction protocol is based on the XIP 
protocol (Ouyang, 2001) with some modifications. 
The main parts of this approach are: 

• Component transaction is the unit of business at 
each service. The component transactions within 
a conversation create a conversational 
transaction;  

• Services conversation C, C={s0, s1, …, sn-1} 
where s0 is the root service starting the 
conversation, and s1, …, sn-1 are the participating 
children of services; 

• Conversational transaction T, T={t0, t1, …, tn-1} 
where t0 is the root transaction starting the 
conversational transaction, and t1, …, tn-1 are  
component transactions corresponding to a 
service s1, …, sn-1; 

• dij represents an interaction from the service ti to 
the service tj. A service interacts with other 
exchanging messages; 

• Each component transaction has a function 
denoted f(dij) that performs the business logic, 
and j(ti) that performs the compensation to 
cancel the committed operations for ti; 

• Each t0, t1,…,tn-1 has two attributes: a deadline 
and a status. The deadline defines when the 
committed transaction cannot be cancelled. The 
status defines t’s life-cycle (i.e. created, 
prepared, running, waiting for other events, 
compensating, hard-committed, local-committed, 
global-committed, aborted and cancelled). 
A conversational transaction is organized in a 

spanning tree formed by component transactions.  In 
this tree, a commit or cancellation is propagated 
using the correlators. A correlator is a handle to a 
node that has information about its parent and their 
immediate children. A correlator is defined in XML 
schema as following:  
<complexType  name = “CorrelatorType”> 
 <element name = “ParentHandle”   type= “HandleType” 
     minOccurs= “0”  maxOccurs= “1”/> 
 <element name = “TranHandler” type = “HandleType”/> 
 <element name = “ChildrenHandles” type= “HandleType” 
     minOccurs = “0” maxOccurs = “unbounded”/> 
</complexType> 
<complexType  name = “HandleType”> 
 <element    name = “URL”    type = “string” /> 
 <element   name = “ID”     type = “decimal”/> 
 <element   name = “Status”  type = “string” /> 
 <element    name = “Time”   type = “string” /> 
 <element   name = “IDEngine” type = “decimal”/> 
 <element    name = “Deadline” type=”string”/ > 
</complexType> 

 
A correlator has information about its parent and 

their immediate children represented by 
HandleType. This HandleType has information 
about endpoint (i.e. URL), transaction ID, 
transaction status, time statistics and workflow 
engine identification. 

FROM CORBA TO WEB SERVICES COMPOSITION

117



 

The XIP protocol consists of two parts. The first 
part has the specification of root transaction that 
starts the conversation. The second part specifies the 
behavior of a component transaction.  In our 
protocol, we follow the same perspective that is 
implemented by the Transaction Assistant in the 
Workflow Engine. The root transaction coordinator 
(RTC) implements the root transaction, and the 
component transactions coordinator (CTC) 
implements the component transaction behavior. 

The RTC has some events that are described as: 
• The start event – the root service sends a start 

event to the RTC that starts the root transaction; 
• The handshaking event – when a component 

transaction is started, it sends a handshaking 
event to its parent, in order to establish a 
connection; 

• The response event – the CTC sends this event to 
RTC, when its suitable component transaction 
ends;  

• The timeout event – each timeout event results in 
a checking in the CTC, using a ping message. If 
there is an error, the suitable service is informed 
about the failure; 

• The compensation event – this event is sent by a 
CTC to its parent.  If this parent does not have 
another immediate child executing a 
compensation event, it sends back to the 
requester CTC a confirmation in order to call the 
function ϕ(ti); 

• The end event – this event is generated by the 
root service that commits or not the 
conversational transaction. The RTC sends to 
each immediate child a commit request and waits 
for a global-committed event; 

• The cancel event – this event is generated by the 
root service that cancels the conversational 
transaction.  
The CTC has dual events to RTC events (i.e. 

start, handshaking, response, timeout, compensation, 
end, and cancel event) and more the following 
events: 

• The global commit event – if a local transaction 
component receives a global commit from their 
children, then it sends a global commit to its 
parent/root; 

• The ping event – a ping event is generated to test 
a transaction component. If a component 
transaction receives a ping, then it checks if its 
children are in a good state by sending a ping. If 
all the children are in a coherent state, then a 
confirmation of execution is sent to its parent, or 
else an error message is created. 
Our protocol differs from other protocols (e.g. 

optimistic commit protocols (Ouyang, 2001), 
transactional conversation, Saga  (Dayal, 2001), 
Activity-Transaction  (Dayal, 2001)) in terms of 

complexity and implementation to provide process 
design, rollback for compensation, and forward 
execution process to guarantee the success of the 
global transaction in presence of faults in sub 
transactions. 

5  WORKFLOW ENVIRONMENT 
FOR WEB SERVICE  

Workflow Environment for Web Service (WEWS) 
is an intermediary infrastructure among service 
providers and service requesters. The Workflow 
technology, WSFL and a transaction compensation 
model are used in order to enable the development 
and the life-cycle control of e-business process. The 
WEWS prototype is being developed in Java, and 
then it will be able to operate in all machines that 
have a JVM. 

5.1 WEWS Architecture 

Figure 2 shows the WEWS architecture. The Server 
Infrastructure is a tool for service composition as 
business process, a repository of described services 
based on UDDI, a scalable workflow engine for flow 
process control, a tool of specialized services and a 
service-tier to enable CORBA objects on the Web.   

Figure 2: WEWS Architecture 

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

118



 

Server Infrastructure is composed of: 
• Broker Server – it receives all the requests to 

find, to publish and to monitor a service; 
• Service Registry Server – it allows publication 

and search of a service in UDDI Registry; 
• Process Model Tool – it allows service 

composition, in other words, it helps to build a 
business process description using the modified 
meta-model of WSFL; 

• Specialized Services – they include some 
services as login, payment and authentication;  

• Pool of Workflow – it is a Workflow Factory and 
a set of Workflow Engines that controls all 
services. The Workflow Factory is responsible 
for creating the workflow engines. The workflow 
engines execute a process based on a process 
model. The pool can be formed for one or more 
machines, then it can provide scalability in the 
server infrastructure;  

• Adapter – it is formed of a service facility and a 
wrapper. It is the tier that makes the link between 
the workflow engines and the engine broker; 

• Engine Broker – the pool of workflow can have 
many machines, but the access for an intranet 
must be limited for proxies, in order to maintain 
security notions.  Then all workflow engines use 
an “Engine Broker” as proxy to communicate 
with the Service Adapters and Service Interfaces 
that are not in the server infrastructure; 

• Service-Tier – it is a layer to adapt CORBA 
objects as Web Service. 

5.2 WEWS Implementation 

The workflow engine is shown in figure 3. It is 
composed of: 

• Scheduler – it schedules and controls the 
execution of tasks according to a defined priority 
list, an execution time, availability, performance, 
and resources; 

• Query – this functional block allows 
administration tools to interact with a workflow 
engine to acquire information about the state of 
process execution, e.g. individual performance, 
dependencies and exceptions; 

• Active Manager – each task in active state is 
controlled and monitored by this manager; 

• Trigger Manager – it supervises tasks in a 
waiting state (task waiting for an event) and 
notifies the scheduler when all resources are 
available for execution of a suitable task; 

• Transaction Assistant – the execution of a 
service composition can follow a transaction 
process. In this case, WEWS includes a 
transaction assistant into the workflow engine to 
support compensation transaction. It 

complements the monitor present in the stack of 
specialized functions; 

• DB Layer – this is a database layer responsible to 
control the information storage, search and 
recovery. It is composed by three data banks: 
Instance, History and Profile.  When the Server 
Broker creates a workflow engine to execute a 
process, it delivers a copy of process model to 
DB Layer that will create an instance of this 
process and put it in Instance repository. If there 
is a fault, the instance repository is used to 
recover a process instance.  An instance is a 
process ready for execution. The history 
repository stores all happened events of an 
already executed instance and it can be utilized 
for performance analysis or processes debugging. 
The profile has all information about 
configuration, participants and necessary 
resources; 

• Handler – the active manager delegates activities 
to be executed by a handler. It is responsible for 
binding the requests with the suitable service 
provider (i.e. service adapter) and controlling the 
service execution.  If a resource is not available 
for an activity, the handler informs the Active 
Manager that puts it in a waiting state. After that, 
the active manager contacts the trigger manager 
that monitors the resource, performs the 
allocation of the requested resource and notifies 

the scheduler, when the resource is available.    
The Adapter is presented in figure 4. It is formed 

of Service Facility and Wrapper. Service Facility 

Figure 3: Workflow Engine 

FROM CORBA TO WEB SERVICES COMPOSITION

119



 

provides support for service monitoring, interaction 
with its suitable workflow engine, security 
requirements, negotiation and payment. Wrapper 
controls a service directly, following the instructions 
received from the workflow engine.  It helps the 
engine with exception detection and notification 
support.  For the wrapper, a service can be a 
business application or a legacy application. 

The Service Facility is structured as following: 
• Workflow Interface – it enables a service to 

participate in a workflow and allows the 
workflow engine to inquire about a service 
execution; 

• Security Support – it complements the 
authentication and authorization management 
that are made for the stack of specialized 
functions. In Web Services, a high granularity of 
protection is desirable. Because of this, in our 
framework, each service has a suitable set of 
entities and a list of restrictions to provide 
security; 

• Login/Account – it controls all accounts and 
limits the access to a registered service. 
Moreover, it is completed by the specialized 
stack. Furthermore, each service provider must 
limit the use of its service; 

• Purchase/Payment – it defines and stores the 
constraints to sell a service, negotiate it and 
enable its payment. It has access to 
functionalities in the stack of specialized 
functions (Purchase/Payment) in order to realize 

the sale of a service and receive the benefits of 
this business;  

• Monitor – this is a tool to facilitate the load 
monitoring in WEWS; 

 The Wrapper is structured in: 
• Manager – it realizes a local schedule of service 

and provides a mechanism control for the 
Service Handler.  The workflow engine executes 
a process, but the local manager controls each 
service. It allows the management of concurrent 
access and keeps the coherent execution of 
services; 

• Exception Support – it detects the occurrence of 
exceptions in a service, gets information (e.g. 
messages about errors and faults) and notifies 
the workflow engine; 

• Specialized Handler – each service has a 
specialized handler to accomplish its direct 
control and hide all the complexities of WEWS. 

6  RELATED WORKS 

In the next subsections, we present some approaches 
that have been proposed as a solution to support the 
development of Web Services in small, medium and 
larger virtual enterprises. Moreover, we will state a 
comparison with our proposal (i.e. WEWS) and 
these approaches, showing similarities and 
differences. 

The Web Service Enablement Framework 
(Akkiraju, 2001) is a software layer between service 
providers and service requesters that facilitates 
several steps of service life-cycle. It allows business 
partners to discover, select and automatically invoke 
services. It provides authentication, logging, 
monitoring and data protection. In other words, it 
assists the management of dynamic e-business. This 
framework has been developed using IBM’s 
WebSphere Application Service and Web Service 
Toolkit (Akkiraju, 2001). 

In comparison with the Web Service Enablement 
Framework, WEWS aims to support the business 
process composition, which is based in Workflow 
Technology and has a stack of specialized functions. 

In (Helal, 2002), an infrastructure is presented to 
manage Web Services.  It uses services as 
participants in an Internet-wide workflow engine.  It 
is composed by: BizBuilder, Sangam and Dynamic 
Workflow Server. This framework allows several 
steps of service life-cycle: publish, discover and 
binding. Hence, it supports service composition, 
negotiation and contracts, process modeling and 
legacy systems integration. 

This framework (Helal, 2002) and WEWS 
allows the services composition based on Workflow 

Figure 4: Adapter 

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

120



 

Technology. They have a coherent and well-defined 
infrastructure to publish, discover, bind and 
compose services. 

However, in contrast with all presented 
frameworks in this paper, WEWS introduces an 
extension of WSFL as workflow language, a 
compensation transaction model and CORBA 
objects wrapped as Web Service.  

7  CONCLUSION 

In this paper, we have discussed the features of 
CORBA and Web Services. On one hand, we have 
shown that CORBA was not yet completely 
explored; and the Web protocols have not evolved 
enough to support CORBA. On the other hand, Web 
Services use the protocols of the Web, thus it is 
more adapted for the Web than CORBA. The Web 
object was not a very successful solution to integrate 
CORBA on the Web, but with the sprouting of Web 
Services new opportunities can be envisaged. We 
propose the externalization of CORBA objects 
inside an Intranet as Web Services.  

Web Services is not a complete solution to create 
complex systems. We have proposed an integration 
of Web Services and Workflow to compose services 
in order to create real systems. Moreover, we have 
suggested an extension to WSFL and a transaction 
protocol. 

An architecture (WEWS) that uses our approach 
for Web Services composition and transaction 
models was depicted and compared with other 
propositions in the same context. To validate this 
architecture, several tests are envisaged as 
implementation of a virtual enterprise in WEWS, 
performance monitoring and analysis. 

REFERENCES 

Akkiraju, R., et al., (2001). A Framework for Facilitating 
Dynamic e-Business Via Web Services, In OOPSLA 
2001, Workshop on Object-Oriented Web Services, 
Tampa Bay, USA. 

Dayal, U., Hsu, M. and Ladin, R., (2001). Business 
Process Coordination: State of the Art, Trends, and 
Open Issues, In VLDB 2001, 27th International 
Conference on Very Large Data Base, Roma, Italy.  

Gokhale, A., and et al., (2002). Reinventing the Wheel? 
CORBA vs. Web Services. In WWW2002, the 
Eleventh International World Wide Web Conference, 
Honolulu, Hawaii, USA. 

Harkey, D., and Orfali, R., (1998). Client/Server 
Programming with Java and CORBA, 2nd Edition, 
John Wiley & Sons. 

Helal, S., et al., (2002). The Internet Enterprise, In 
SAINT'02, Second IEEE/IPSJ Symposium on 
Applications and the Internet, Nara, Japan. 

Leymann, F., (2001). Web Services Flow Language - 
(WSFL 1.0)”. 

Northrop, L., et al., (1997). Distributed Object Technology 
with CORBA and Java: Key Concepts and 
Implications, Technical Report CMU/SEI-97-TR-004, 
Printed in the USA. 

OMG, (2000). Trading Object Service Specification, 
Version 1.0. 

OMG, (2001). The Common Object Request Broker: 
Architecture and Specification, Revision 2.4.2. 

Ouyang, J., and et al., (2001). An Approach to Optimistic 
Commit and Transparent Compensation for E-Service 
Transactions, In  PDCS 2001, 14th International 
Conference on Parallel and Distributed Computing 
Systems, Dallas TX, USA. 

Tsur, S., (2001). Are Web services the next revolution in 
e-commerce?, In VLDB 2001, 27th International 
Conference on Very Large Data Bases, Roma, Italy. 

UDDI Project, (2000). UDDI Technical White Paper. 
van der Aalst, W.M.P., (2003). Don’t go with the flow: 

Web Services composition standards exposed. Web 
Services – Been there done that? Trends & 
Controversies, issue of IEEE Intelligent Systems, IEEE 
Press. 

W3C, (2001a). Simple Object Access Protocol (SOAP) 
1.1, W3C Submission. 

W3C, (2001b). Web Services Description Language. 
WfMC, (2002a). The Workflow Handbook 2002, Edited by 

Layna Fischer, 428 pages.  
WfMC, (2002b). Workflow Process Definition Interface – 

XML Process Definition Language, Specification 
(Draft), version 0.04. 

Zhang, L., Yadav, P., Chang, H., et al., (2001). ELPIF: An 
E-Logistics Processes Integration Framework Based 
on Web Services, In OOPSLA 2001, Workshop on 
Object-Oriented Web Services, Tampa Bay, USA. 

FROM CORBA TO WEB SERVICES COMPOSITION

121


