
A/D CASE: A NEW HEART FOR FD3
∗.

A. Mora, M. Enciso, P. Cordero, I. Pérez de Guzmán, J. Guerrero
E.T.S.I. Informática. Universidad de Málaga.

Campus de Teatinos. 29071 Málaga, Spain

Keywords: Conceptual data model; Functional dependencies, Logic and Information systems; Schema integration; Re-
verse engineering.

Abstract: In (Enciso and Mora, 2002) we introduce the Functional Dependencies Data Dictionary (FD3) as an archi-
tecture to facilitate the integration of database Systems. We propose the use of logics based on the notion of
Functional Dependencies (FD) to allows formal specification of the objects of a data model and to conceive
future automated treatment.
The existence of a FD logic provides a formal language suitable to carry out integration tasks and eases the
design of an automatic integration process based in the axiomatic system of the FD logic. Besides that, FD3,
provides a High Level Functional Dependencies (HLFD) Data Model which is used in a similar way as the
Entity/Relationship Model.
In this paper, we develop a CASE tool named A/D CASE (Attribute/Dependence CASE) that illustrates the
practical benefits of the FD3 architecture. In the development of A/D CASE we have taken into account other
theoretical results which improve our original FD3 proposal (Enciso and Mora, 2002). Particularly:

• A new functional dependencies logic named SL
F D

for removing redundancy in a database sub-model
that we present in (Mora, 2002; Cordero et al., 2002a). The use of SL

F D
add formalization to software

engineering process.

• An efficient preprocessing transformation based on the substitution paradigm that we present in (Mora et al.,
2003).

Unlike A/D CASE is independent from the Relational Model, it can be integrated into different database
systems and it is compatible with relational DBMSs.

1 INTRODUCTION

An heterogeneous database system arises from sev-
eral sub-systems described by local designers which
may use different data models (relational, hierarchi-
cal, network , files system, etc.). All these data mod-
els have in common the existence of attributes (atomic
data) and relationships between them. The data and
most of their relationships can be stored in databases
using functional dependencies.

As we show in (Enciso and Mora, 2002), database
integration usually cover the following two steps (see
also (Atzeni and Torlone, 1997)):

• The mapping between sub-models and a selected

∗This work has been partially supported by the Cicyt re-
search project 1109/2000

canonical model.

• The removing of data redundancies in the inte-
grated model.

The important notion of functional dependence
(FD) allows the integration of several data submodel
in a new global data model having a formal basis.

We conceive a new data model based directly in
FD logic. The FD data model will be considered as
the integration canonical model. We describe the data
and the relationship among them using the notion of
functional dependence and we develop an axiomatic
system to have deduction capabilities.

In our methodology the user participates directly
in the design process. In (Enciso and Mora, 2002),
we propose the use of the Functional Dependencies
Data Dictionary, named FD3, as an architecture for

482
Mora A., Enciso M., Cordero P., Pérez de Guzmán I. and Guerrero J. (2004).
A/D CASE: A NEW HEART FOR FD3.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 482-487
DOI: 10.5220/0002629004820487
Copyright c© SciTePress



assisting the integration of heterogeneous databases.
FD3 is based in a logic which allows the descrip-

tion of the FDs contained in the local database sys-
tems and the construction of a unified global sys-
tem. To communicate the information collected in the
global model, we introduce a High Level Functional
Dependencies (HLFD) Data Model which is used in
a similar way as the Entity/Relationship Model. The
HLFD data model can be deduced automatically from
a EFD logic theory. Furthermore, it is possible to
translate automatically the HLFD data model into a
relational database.

In (Cordero et al., 2002a), we introduce a new
axiomatic system for FD logics, named SL

F D
par-

ticularly designed to remove redundancy. We de-
fine two substitution operators and we illustrate their
behaviour for removing redundancy. The new sys-
tem improves the FD logic presented in (Enciso and
Mora, 2002) and it is equivalent to Armstrong’s ax-
ioms (Armstrong, 1974). We also showed that SL

F D

is more adequate for the applications.
In (Mora et al., 2003) we introduce a pre-

processing transformation based on SL
F D

which re-
moves redundancy in a given set of Functional De-
pendencies and allows a more efficient further man-
agement by other well known algorithms (Atzeni and
Torlone, 1997; Biskup and Convent, 1991; ?). We
have carried out an empirical study to prove the prac-
tical benefits of our approach.

In this paper, we present Attribute/Dependencies
(A/D) CASE, a case tool which apply the result cited
above in the area of heterogeneous database inte-
gration and in database cooperative design (Cordero
et al., 2002b). A/D CASE includes a High Level
Functional Dependencies (HLFD) Data Model which
can be deduced from the global data dictionary, using
automated reverse engineering.

This paper is organized as follows: in section 2 we
summarize the FD3 architecture presented in (En-
ciso and Mora, 2002). Section 3 introduces SL

F D

as the new heart of the FD3, and section 4 presents
the pre-processing transformation which removes re-
dundancy in a given set of Functional Dependencies.
The AD/CASE tool is showed in section 5. Section 6
outlines the conclusions and future works.

2 FD3 ARCHITECTURE

As was argued in (Bertino et al., 2001), to facili-
tate user participation, we need new tools (easier to
use and more powerful) and new techniques (includ-
ing new data models). In this paper, we present At-
tribute/Dependencies (A/D) CASE, a case tool to de-
sign databases in a heterogeneous environment.

A/D CASE allows to put in practice the FD3 archi-

Figure 1: The Functional Dependencies Data Dictionary

tecture presented in (Enciso and Mora, 2002). FD3
turns around a simple element: The Functional De-
pendence (FD). The FD notion is inherent to most
used database models (hierarchical, network, rela-
tional,etc.). Figure 1 shows briefly the FD3 archi-
tecture presented. The main characteristic of our ar-
chitecture is the use of logic in all the stages: analysis,
design, model transformation, integration, etc.

FD3 allows the generation of a global data model
as follows:

1. (i) We extracts some FD’s automatically from the
conceptual data model (structural FDs), (ii) the
designer adds other FDs which corresponds to re-
quirements of the information system (environment
FDs). The local data dictionaries will be formally
represented using an FD logic.

2. FD3 is the union (integration) of all the FD sub-
theories (local data dictionaries), rendering an inte-
grated FD logic theory.

3. FD3 is depurated and we remove redundancy by
applying the preprocessing transformation that we
propose in (Mora et al., 2003). We obtain the Depu-
rated FD logic theory which corresponds to the
global schema of the heterogeneous database.

4. Finally, we may deduce a high level data
model, named High Level Functional Dependen-
cies (HLFD) data model from the integrated FD
logic theory . The HLFD data model allows us to
obtain a global vision of the whole system with a
strong level of abstraction. The designer has a high
level data model that will be use in a similar way as
the Entity/Relationship model.

3 SUBSTITUTION LOGIC

In this paper we select Substitution Logic
SL

F D
(Cordero et al., 2002a) to be the heart of

A/D CASE: A NEW HEART FOR FD3

483



FD3. SL
F D

2 is a formal system appropriate to be
used in integration process.

In this section we summarize the new axiomatic
system SL

F D
(Cordero et al., 2002a). Their ax-

iomatic system is guided by the idea of remove re-
dundancy in an efficient way. This is one of the novel-
ties of SL

F D
because other well known FD logic sys-

tem are guided by Armstrong Relations (Armstrong,
1974), which captures all the FD which can be de-
duced from a given set of FDs.

Other important novelty of SL
F D

is the definition
of two substitution operators which have not been de-
fined up to now in other FD logic. Their application
do not imply the incorporation of wff , but the substi-
tution of new wffs by simpler ones, with an efficiency
improvement
Definition 3.1 Given the alphabet Ω∪{7→} where Ω
is an infinite numerable set, we define the language
LFD = {X 7→Y | X,Y ∈ 2Ω and X 6= ∅}. In the
literature, attributes must be non-empty. Notice that
in LFD the right hand side of a wff may be the empty
set, named >.

We define an axiomatic system, SFDS , for LFD

with a substitution rule as primitive rule. The main
novelty of the axiomatic system is that, for first
time (Atzeni and Antonellis, 1993; Fagin, 1977a;
Ibaraki et al., 1999; Paredaens et al., 1989), transi-
tive rule is not a primitive rule, with the consequently
efficiency benefits.
Definition 3.2 The system SFDS defined on LFD

has one axiom scheme:
AxFDS : ` X 7→Y , where Y ⊆ X . Particulary,

X 7→> is an axiom scheme.
The inference rules are the following:

Fragmentation rule

bFragc: X 7→Y `SF DS
X 7→Y ′ , where Y ′ ⊆ Y

Composition rule

bCompc: X 7→Y, U 7→V `SF DS
XU 7→Y V

Substitution rule

bSubstc: X 7→Y, U 7→V `SF DS
(U -Y )7→(V -Y ) ,

where X ⊆ U , X ∩ Y = ∅

This axiomatic system is equivalent to other well
known FD axiomatic system (Atzeni and Antonellis,
1993; Fagin, 1977a; Ibaraki et al., 1999; Paredaens
et al., 1989) and, thus, we have the usual derived rules
in SL

F D
. Particularly we may derive the Reduction

Rule and the Union Rule that will be used later:
Reduction Rule

bReducc: X 7→Y ` X 7→Y -X , where Y -X 6= ∅

2We replace EFD logic presented in (Enciso and Mora,
2002) by Substitution Logic presented in (Cordero et al.,
2002a) because of their practical benefits.

This rule allows the construction, in linear time, of an
equivalent FD set with less redundancy.

Union Rule

bCompc: X 7→Y, X 7→V `SF DS
X 7→Y V

This rule allows a reduction in the number of wff
contained in the FD set. Nevertheless, all automated
deduction FD systems uses fragmentation rule instead
of union rule. Fragmentation ensures the minimun
size in left hand side of the wff , but enlarge the size
of the FD set.

Furthermore, we have the following derived rule, a
novelty in the literature: r-Substitut.Rule

brSustc: X 7→Y,U 7→V ` U 7→(V -Y ) ,
if X ⊆ UV,X ∩ Y = ∅

4 A PRE-PROCESSING
TRANSFORMATION BASED ON
THE SUBSTITUTION
PARADIGM

In (Mora et al., 2003) we present an efficient pre-
processing transformation, based on the substitution
paradigm, which removes redundancy from a given
set of functional dependencies. Furthermore, we use
Prolog to build an empirical study which illustrates
the practical benefits of our approach.

The preprocessing transformation establishes an ef-
ficient pruning based mainly on the substitution rules.
In some cases, our preprocessing transformation cap-
tures the redundancy of the original FD set entirely,
with the corresponding benefits for the efficiency. The
transformation applies the following steps 3:

• In step 1, the rule bReducc transforms FDs into
reduced FDs.

• In step 2, the rule bUnionc renders FDs with dis-
joint determinants.

• In step 3, we exhaustively apply the substitution
rules. After each application of substitution if the
result requires it, the union rule will be applied be-
fore the following substitution.

As we remark in the previous section, before start-
ing step 3 the size of the FDs set has been reduced
with limited linear cost. We will achieve an important
improvement with respect the rest of FDs algorithms,
because all of them apply the rule bFragc as their first
transformation, which increases the number of FDs.

This preprocessing transformation is applied to an
input FD set, rendering a new FD set with less redun-
dancy. In some cases, the new set has been treated

3The transformation has quadratic complexity.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

484



completely and it does not have any redundant FD.
In other cases, the new set has less size (considering
both, attributes and FDs) than the original one and,
consequently, can be treated more efficiently by other
well known algorithms (Atzeni and Torlone, 1997;
Biskup and Convent, 1991; Coulondre, 2003).

5 A/D CASE

In (Enciso and Mora, 2002) we propose as a future
work to develop a case tool to implement all the tech-
niques involved in the FD3 architecture. In this sec-
tion we show A/D CASE v1.0, which covers this am-
bitious goal.

Figure 2: A/D CASE

In the Figure 2 we show the buttons that appear in
A/D CASE. Figure 3 shows the environment of A/D
CASE. In the following subsections, we will show

Figure 3: A/D CASE tools.

how A/D CASE helps the users to built a global and
unified schema following the FD3 architecture.

5.1 Build the local FD3s

To prevent the users from managing a formal sys-
tem, they will generate a Functional Dependencies
Diagram (FD Diagram). This is a natural way to
communicate their knowledge about the Information
System. The FDs included in the FD diagram are
translated into SL

F D
well-formed formulas automat-

ically. Thus, we have the benefits of logic formalisms
(soundness and automated treatment) without suffer-
ing their disadvantages (user-unfriendlyness).

Notice that the direct specification of functional de-
pendencies by the user is a novelty in the literature. In
fact, only a few data models manage FDs, and most
of them consider the FD in a hidden mode, because
there seems to be a concept difficult to learn. Our
opinion is that FD Diagram eases the comprehension
of FD, which is more natural than it appears. Thus,
A/D CASE simply asks the user for his data (his at-
tributes) and let him to establish a connection, named
the left han side determines the right hand side.

The user inserts the wffs that represent his local
data model using A/D CASE. The user draws the at-
tributes in a rectangle box and uses the connect button
to specify the existence of a FD among the attributes.
Each connection symbol (each circle) represents a FD
of the local schema. Notice that the box representing
an attribute appears only once in the local FD dia-
gram.

A/D CASE allows to manipulate the graphical rep-
resentation of attributes and dependencies in the usual
way: add, modify, delete, move, resize, zoom, etc.

Figure 4 shows an example of a local schema rep-
resenting an airport subsystem. The user specify his
subsystem drawing the functional dependencies.

In (Enciso and Mora, 2002),(Cordero et al., 2002b)
we describe exhaustively the equivalence between a
set of wffs of the FD logic and a FD diagram. A/D
CASE helps the user to specify FDs and to translate
diagrams into wffs .

Figure 4: An FD Subscheme.

5.2 Remove redundancy from all
local schemas

SL
F D

is the core of this process. It is possible to
remove redundancy from a FD diagram using the new
Remove Redundancy pre-processing transformation.

We would like to remark that the success of our ap-
proach is due to the existence of an axiomatic system
which follows a different direction in the FDs treat-
ment. Figure 3 shows the remove redundancy FD3
Local in the Tools submenu.

A/D CASE: A NEW HEART FOR FD3

485



5.3 Obtain the global FD3

The above step improves the efficiency of the join-
ing process: the local views that should be integrated
have been depurated separately. Now, we integrate all
the sub-schema in a global schema containing all the
information in a unified mode.

In our tool, it is a trivial task, because integration
is defined with the union set operator. The integrated
model will be depurated again to avoid redundancy.

5.4 Obtain HLFD data model

The FD data model is apropiat to integrate and ma-
nipulate data knowledge. Nevertheless, it is not a
good approach to communicate this information to the
users. This task must be done using another model
with a higher level of abstraction. By the other side,
we would like to get an automated process which en-
able us to get this high level data model directly from
the FD data model, using automated reverse engineer-
ing techniques.

A/D CASE construct in a automatic way a new data
model, named High Level Functional Dependencies
(HLFD) Data Model (see (Enciso and Mora, 2002;
Cordero et al., 2002b)) which can be used to commu-
nicate information in a more natural way. Figure 5
presents the HLFD Data Model of the Figure 4.

Figure 5: The HLFD Data Submodel.

A/D CASE tool generates automatically a HLFD data
model. As we introduce in (Enciso and Mora, 2002),
the HLFD presents the attributes grouped in objects
which can be considered as entities. A/D CASE label
each object with a generic name (T1, T2, etc. in fig-
ure 5. Later, the user label these objects with names
which provides semantic information to the global
HLFD model.

Finally, A/D CASE may translate the HLFD data
model to a relational model (Enciso and Mora, 2002;
Cordero et al., 2002b). Thus, A/D CASE gener-
ates both, the relational database itself and the En-
tity/Relational model which correspond with the in-
formation contained in the global FD data model.

6 CONCLUSIONS AND FUTURE
WORK

In this work we present A/D CASE, a case tool
for integrating database local schemes in a hetero-
geneous framework. A/D CASE follows the Func-
tional Dependencies Data Dictionary (FD3) Archi-
tecture presented in (Enciso and Mora, 2002) and it
has automated deduction capabilities. The engine of
A/D CASE is based on the new logic SL

F D
and on

the preprocessing transformation presented in (Mora
et al., 2003). The heart of A/D CASE allows to re-
move redundancy in a set of functional dependencies
and facilitates the integration process. Beyond this
technical results, this work shows that functional de-
pendencies logics may be used successfully in prac-
tice.

Furthermore, A/D CASE generates automati-
cally, using reverse engineering techniques, a High
Level Functional Dependencies (HLFD) Data Model
which may be used in a similar way as the En-
tity/Relationship Model.

In short term, we will use A/D CASE to make an
empirical study about the use of the FD data model
versus the use of the Entity/Relationship model. We
will propose several information systems to differ-
ent designers, some of them will use A/D CASE
and the FD data model and the others will use an
Entity/Relationship case tool. We will compare the
model obtained by these users using different data
models and different tools.

In medium term, we will extend A/D CASE in two
directions:

• To consider the manipulation of another data
dependencies (Fagin, 1977b; Lakshmanan and
Veni Madhavan, 1987; Lopes et al., 2002).

• To investigates how the proof procedure for the
implication problems, called chase (Biskup and
Convent, 1991) and a new top-down proof proce-
dure for generalized data dependencies (Coulon-
dre, 2003) can be improved with the substitution
paradigm.

In long term, we intend to apply our extended the-
oretical result to a set of current problems that have
been face on with dependencies, like the following:

• The elimination of replication in XML (Lee et al.,
2002).

• The elimination of redundancy in the relations be-
tween data discovered using Data Mining tech-
niques (Lopes et al., 2000).

• The elimination of redundancy in associations rules
discovered using Data Mining techniques (Calders
and Paredaens, 2003).

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

486



REFERENCES

Armstrong, W. W. (1974). Dependency structures of data
base references. IFIP Cont. Poc.

Atzeni, P. and Antonellis, V. D. (1993). Relational Database
Theory. Benjamin/Cummings.

Atzeni, P. and Torlone, R. (1997). Mdm: a multiple-
data-model tool for the management of heterogeneous
database schemes. ACM-SIGMOD.

Bertino, E., Catania, B., and Zarri, G. P. (2001). Intelligent
database systems. ACM Press. Addison-Wesley.

Biskup, J. and Convent, B. (1991). Relational chase proce-
dures interpreted as resolution with paramodulation.
Fundamenta Informaticae, 15 (8):123–138.

Calders, T. and Paredaens, J. (2003). Axiomatization of
frequent itemsets. TCS, 290 (1):669–693.

Cordero, P., Enciso, M., Guzmán, I. P. d., and Mora, A.
(2002). SLfd logic: Elimination of data redundancy
in knowledge representation. LNAI 2527, pages 141–
150.

Cordero, P., Enciso, M., Mora, A., and Guzmán, I. P. d.
(2002). Modelo de datos de dependencias funcionales
para un entorno turı́stico cooperativo. Proceedings
TURITEC 2002, pages 61–76.

Coulondre, S. (2003). A top-down proof procedure for gen-
eralized data dependencies. Acta Informática, 39:1–
29.

Enciso, M. and Mora, A. (2002). FD3: A functional depen-
dencies data dictionary. Proceedings of ICEIS, 2:807–
811.

Fagin, R. (1977). Functional dependencies in a relational
database and propositional logic. IBM. Journal of re-
search and development, 21 (6):534–544.

Fagin, R. (1977). Multivalued dependencies and a new nor-
mal form for relational databases. ACM TODS 2.

Ibaraki, T., Kogan, A., and Makino, K. (1999). Functional
dependencies in horn theories. Artificial Intelligence,
108 1-2:1–30.

Lakshmanan, V. S. and Veni Madhavan, C. E. (1987). An
algebraic theory of functional and multivalued depen-
dencies in relational databases. TCS, 54, 1:103–128.

Lee, M. L., Ling, T. W., and Low, W. L. (2002). Designing
functional dependencies for XML. LNCS. EDTB 2002
Proceedings., 2287:124–141.

Lopes, S., Petit, J.-M., and Lakhal, L. (2000). Efficient dis-
covery of functional dependencies and armstrong re-
lations. EDBT 2000, LNCS, 1777:350–364.

Lopes, S., Petit, J.-M., and Toumani, F. (2002). Discov-
ering interesting inclusion dependencies: application
to logical database tuning. Information Systems, 27
1:1–19.

Mora, A. (2002). Dependencias funcionales, ideal-
operadores no deterministas y operadores de susti-
tución. PhD Thesis. UMA.

Mora, A., Enciso, M., Cordero, P., and Guzmán, I. P. d.
(2003). An efficient preprocessing transformation
based on the substitution paradigm. CAEPIA 2003.
LNAI. Springer Verlag.

Paredaens, J., De Bra, P., Gyssens, M., and Van Gucht, D. V.
(1989). The structure of the relational database model.
EATCS Monographs on TCS.

A/D CASE: A NEW HEART FOR FD3

487


