
AN OBJECT ORIENTED APPROACH FOR DOCUMENT
MANAGEMENT

S. Khaddaj
School of Computing and Information Systems, Kingston University, Kingston upon Thames KT1 2EE, UK.

Keywords: Object Oriented Modelling, Object Versioning, Document Management Systems

Abstract: It is already widely accepted that the use of data abstraction in object oriented modelling enables real world
objects to be well represented in information systems. In this work we are particularly interested with the
use of object oriented techniques for document management. Object orientation is well suited for such
systems, which require the ability to handle multiple types content. However, the matter of how to deal with
the reuse and management of existing documents over time remains a major issue. This paper aims to
investigate a conceptual model, based on object versioning techniques, that will represent the semantics in
order to allow the continuity and pattern of changes of documents to be determined over time.

1 INTRODUCTION

Object oriented techniques have been used
successfully in many different applications that
range from numerical modelling to web applications.
The main benefits, apart from the abstraction power
to represent real objects, are the provision for the
extensibility needed to create new models and the
semantic needed to construct complex objects of
similar states [Yourdon 1994, Martin and Odell 1995,
Bertrand 1997].

The use of object oriented techniques in
information management has been given
considerable attention in the past decade [Cattell
1991, Won 1998, Loomis 1995]. Recent research works
have used temporal information and object oriented
techniques to explicitly define the relationship
between object behaviour over time [Khaddaj et al.].
The ability to examine the continuity of object
changes over time is very important for many
different applications.

The object oriented approach provides the
flexibility to make the changes to attributes and/or
behaviour of objects independent of one another, in
order to allow the examination of detailed
information of object application models. Therefore,
it can be used to identify the pattern of changes
within the objects. The simplest way to store
changes to objects is that every time a change occurs
the whole object is stored again, but this can be
prohibitively costly in terms of storage space, and
might compromise system performance particularly

if objects are updated regularly (fast changes). An
alternative is to use object versioning techniques in
order to track the evolution of objects. This paper
aims to investigate a document management object
model that will represent the semantics to allow the
continuity and pattern of changes of objects to be
determined over time.

2 OBJECT ORIENTATION AND
INFORMATION MANAGEMENT

The object-oriented approach has the abstraction
power to represent real objects and it has been used
successfully for the unification of temporal and other
information related to objects. It is supported by
efficient design tools such as UML (Universal
Modelling Language), programming tools such as
C++ and Java and, more recently, by object oriented
databases such as Objectivity and Versant. The
choice of a particular database, however, clearly
depends on the actual application. A relational
database is a better choice for a project where
relationships among objects are fairly fixed and well
known. Object-oriented databases can outperform
relational databases at handling complex
relationships among objects [Loomis 1995]. The
problem becomes acute, however, when the changes
are too fast for a database to be redesigned so it can
rapidly deliver necessary information.

558
Khaddaj S. (2004).
AN OBJECT ORIENTED APPROACH FOR DOCUMENT MANAGEMENT.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 558-561
DOI: 10.5220/0002620705580561
Copyright c© SciTePress

3 OBJECT VERSIONING

Associating additional temporal information with
individual objects provides a means of recording
object histories, and thereby allowing the histories of
objects and the types of objects to be easily traced
and compared. This means that the temporal aspects
can also be described by their temporal topological
relationships. The object-oriented approach has been
used in different ways to effectively track versions
of the original object and these include the use of
version management [Wachowicz and Healey 1994]
and the identity-based method [Hornsby 2000].
Moreover, other strategies such as schema
versioning can also be considered [Grandi 2002].

There are a number of methods for dealing with
object versioning. The first technique stores the
versions as complete objects, which is easy to
implement in existing database systems but it is
costly in storage space. The second approach stores
one version as a complete object and the rest of the
versions are presented as differences between the
current version and the previous version. The
technique is difficult to implement but it solves the
storage space problems. These two approaches have
been examined for relational databases [Dadam et al.,
1984].

3.1 Complete Versions

The first approach can be stated using the following
equation (1):

Versions(x)=(CVx(n), CVx(n-1) ,….., CVx(n0)) (1)

In equation (1), CVx(n) represents the complete
version, n indicates the number of the version, x is
the object and n0 is the oldest version number. Each
version can be accessed directly by reference to the
number of the version, n.

3.2 Linear Versioning

Using this technique one version is stored as a
complete object, and the rest of the versions are
presented as differences between the versions. The
relationship using this approach is based on one-to-
one versioning of objects, which means any parent
or base object will have only one child or derived
object. The technique can be classified into two
versioning strategies. The first strategy allows the
current version to be calculated from the previous
version and is referred to as forward oriented
versioning. The second strategy enables the previous
version to be evaluated from the current version and
is referred to as backward oriented versioning

[Dadam et al., 1984]. Using forward linear versioning
the temporal relationships between the generic
object and versions is given by:

Versions(x)=(∆x (n,n-1), ∆ x (n-1,n-2),.. .,

 ∆ x (n0+1, n0), CVx(n0)) (2)

Where n0 indicates the generic version, which holds
the complete attributes and behaviour. ∆ x (k, k’)
represents the difference between the current version
(k) and the previous version (k’) of object x. As
shown in equation (2) access to the current version n
requires n-1 iterations, which means that this
strategy provides faster access time for the oldest
version.

In backward linear versioning the current object
holds the complete attributes and behaviour. The
temporal relationships between the current object
and versions is given by:

Versions(x) = (CVx(n), ∆x (n,n-1), ∆x (n-1,n-2), . .,

∆x (n0+1, n0)) (3)

As shown in the equation (3), the rest of the

versions are expressed as delta to the successor-in-
time version, which means that this strategy
provides faster access time for the newest versions.
As a result, this strategy is bound to be more useful
than the previous one for most applications.

3.3 Branching

This technique is also classified into two versioning
strategies. The branch forward oriented strategy is
based on one-to-many object versioning (object
splitting), which means any parent or base object
will have many children or derived objects. The
branch backward oriented strategy is based on
many-to-one object versioning (object merging)
which means any child or derived object will have
many parents or base objects. The relationship using
the first strategy provides the same access time for
all versions:

Versions(x) = (∆x (n,n0), ∆x (n-1,n0),,

∆x (n0+1, n0), CVx(n0)) (4)

The relationship using the second strategy provides a
faster access time for the current version:

Versions(x) = (CVx(n), ∆x (n,n-1), ∆x (n,n-2), . .,

∆x (n, n0)) (5)

AN OBJECT ORIENTED APPROACH FOR DOCUMENT MANAGEMENT

559

Document Type Class Location Class Temporal Class

Document Object Class

Version, Event and
Manager Classes

Aggregation
Inheritance

Figure 1: Composite classes of a document object

4 DOCUMENT MANAGEMENT

Documents can now be generated and distributed
easily, but what is still needed is support in
managing the information contained in those
documents [Barth 2000, Bielawski 1998]. This is vital
because by putting pieces of information from
different documents together, the user can generate
new knowledge [Davenport et al., 1998]. The ability to
collect, store, manage, analyse, retrieve and utilise
information about documents, and present
information in text, graphics and, increasingly,
multimedia form has received considerable attention
in the past few years [Bielawski and Boyle 1998,
Outsell 2001, Outsell 2001]. However, the matter of
how to deal with the reuse and management of
existing information over time remains a major
issue.

4.1 Object Oriented Model for

Document Management

In this section we are concerned with a generic
document management, context independent, object
model reflecting the structure and semantic linking
for different types of documents. The model should
take into account document structuring and content
referencing; and includes issues like document
versions, ownership, notification and propagation of
changes, particularly in a collaborative environment.

Of particular interest in this approach, are
scenarios when documents are regularly updated,
and new versions are created whether there is a need
for time stamping or not. Clearly, it is more useful
when time stamping is required, i.e. where there is a
need to keep a history of activities and changes in
managed documents, such as user manuals, online
help, tourist guides, web applications, etc. The idea
is to simplify the management of all types of
documents such as scanned paper documents, faxes,
emails, word processing generated reports,
spreadsheets, html forms, and so on.

Using this approach, changes to documents are

handled by version management. A version of the
object consists of composite classes as in figure 1.
The aggregated composite classes include a
document type class (documents can be classified
according to their types which can take the form of
texts, graphics, multimedia etc, and can be regarded
as derived classes from the type base class), location
class and temporal class. The associated composite
classes include manager class and event class. The
location class deals with queries about the location
of the object document within the federated database
(including the ability to search documents by either
context or index term, text extraction and full text
search engine). The type class deals with queries
about the features of an object (e.g. length, content
types etc). The temporal class deals with the queries
about the time attributes of the object (e.g. when was
the document created). Furthermore, an event class
deals with the changes (and their causes) of the
document object (e.g. adding new manuals after an
operating system upgrade). And, a manager class
with persistent object store, including the ability to
store documents, to control the access to documents,
to deal with the effect of the changes of the object,
to assure changes are not confused, and to co-
ordinate documents transformation, extension, etc.

4.2 The Version Class

As figure 2 illustrates, a document object is
represented as a generic object and any subsequent
changes are represented as versions. Each version of
the object consists of changes (involving an attribute
or behaviour) of the aggregated classes (type,
location and temporal) and the associated class
(event and manager). Subsequent changes of
attributes of the versions will generate related
dynamic attributes and temporal links to be updated
to the respective versions. The relationships between
the generic object and the versions of the object are
represented by temporal version management
[Dadam 1984]. To save storage space, only the
generic version hold the complete attributes and
behaviour of the object.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

560

4.3 System Implementation

A successful implementation of the model will
require an Object Oriented Database System
(OODBS). The OODBS considered in this work is
based on Objectivity/DB [Objectivity/DB 2000]. The
classes (version, temporal, location, type, event and
manager) are defined in the application schema file,
called Data Definition Language (DDL). The DDL
processor generates the schema header file and the
schema source code which are linked with the
application source code.

Objectivity/DB has the capabilities to represent
the various versioning approaches: linear, splitting
and merging. As discussed earlier, simple changes
are represented by a linear versioning method while
complex changes, involving splitting and merging,
are represented by branching. document objects
persist by storing the object within the container of
the database. Persistent objects are identified using
the object identifier (OID) which remains unique
within a federated database. Objectivity/DB uses an
object handling class to access persistent objects
automatically by the DDL process for every
persistence class found in the schema header. All the
objects and versions in the database can be
determined by scanning through the database using
iterative scanning functions.

5 CONCLUSIONS

The applications of object oriented techniques to
document management have been discussed in this
paper. Particular attention was paid to the concept of
object versioning and its applications. The presented
object oriented approach provides an integrated
framework for effective tracking of the evolution of
objects. It also promotes good temporal modelling,
because the temporal attributes and behaviour of the
versions are independent but have relationships that
enable the tracking of patterns of change. Also, less
data storage is required since only the generic object
and its versions are stored.

REFERENCES

Yourdon, E. “Object-Oriented System Design: An
Integrated Approach”, Yourdon Press, 1994.

Martin J., Odell J.J., “Object-Oriented Methods: A
Foundation”, Prentice Hall, Englewood Cliffs, 1995.

Bertrand M., “Object-Oriented Software Construction”,
Prentice Hall Publishing International Series in
Computer Science. 1997.

Cattell R.G.G., “Object Data Management, Object-
Oriented and Extended Relational Database Systems”,
Addison-Wesley Publishing, 1991.

Won K, Lochovsky, F., “Object-Oriented Concepts,
Databases, Applications”, ACM press Frontier Series.
Addison-Wesley Publishing, 1989.

Loomis M.E.S., “Object Databases; The Essentials”,
Addison-Wesley Publishing,1995.

Khaddaj S., Adamu A., M. Morad, "Object versioning
and Information Management”, Journal of Information
and Software Technology,to appear.

Wachowicz, M. and Healey, R. “Towards temporality in
GIS” Innovation in GIS I, by Worboys M. F. Vol 1
pp.105- 115, Taylor & Francis, 1994.

Dadam, P., Lum, V., Werner, H. D., “Integrating of time
versions into relational database systems”, Very Large
Database Conference, pp. 509-522, 1984.

Hornsby K., Egenhofer M., “Identity-Based Change: A
Foundation For Spatio- Temporal Knowledge
Representation”, International Journal of Geo
Information Systems 14(3), pp 207-224, 2000.

Grandi F., Mandreoli F., “A Formal Model for Temporal
Schema Versioning in Object-Oriented Databases”. A
Timecenter Technical Report, 2002.

Barth S, “KM Horror stories”, Knowledge Management 3,
No 10, pp 36-40, 2000.

Bielawski L., Boyle J, “Electronic Document Management
Systems: a User Centered Approach for Creating,
Distributing and Managing Online Publications”,
Upper Saddle River, P Hall 1998.

Davenport T. H, De Long D. W. and Beers M. C.,
“Successful Knowledge Management Projects”, Sloan
Management Review, 39, pp 43-57, 1998.

Outsell Inc. “ Taxonomies: Structuring Today’s
Knowledge Systems”, Infor Briefing 4, pp 1-18,2001.

Outsell Inc., “ Knowledge Management: It’s All About
Behavior”, InforBriefing 4, pp 1-16, 2001.

Objectivity/DB, “Complete handbook for objectivity/C++
Instruction Manual”, 2000.

Ti
V0 = Generic Object
V1 ,V2, V(n+1) = Version changes

 = Temporal topology link

 V0 V2 V1 V(n+1)

 Figure 2: Relationship between the versions and generic object

AN OBJECT ORIENTED APPROACH FOR DOCUMENT MANAGEMENT

561

