A DATA WAREHOUSE FOR WEATHER INFORMATION

A Pattern recognition solution for climatic conditions in México

José Torres Jimenez

Computer Science Department, ITESM Morelos, Paseo de la Reforma 182-A, Cuernavaca Morelos, México, CP 62589

Jesús Flores Gómez

Computer Science Department, ITESM Morelos, Paseo de la Reforma 182-A, Cuernavaca Morelos, México, CP 62589

Keywords: Database technologies, Data Warehouse, Pattern recognition in Data Visualization

Abstract: Data warehouse related technologies, allows to extract, group and analyze historical data in order to identify information valuable to decision making processes. In this paper the implementation of a weather data warehouse (WDW) to store México’s weather variables is presented. The weather variables data were provided by the Mexican Institute for Water Technologies (IMTA), the IMTA does research, development, adaptation, human resource formation and technology transfer to improve the Mexico’s water management, and in this way contribute to the sustainable development of Mexico. The implemented WDW contains two dimension tables (one time dimension table and, one geographical dimension table) and one fact table (that stores the data values for weather variables). The time dimension table spans over ten years from 1980 to 1990. The geographical dimension table involves many Mexico’s hydrological zones and comes from 5551 measuring stations. The WDW enables (through the dimensions navigation) the identification of weather patterns that would be useful for: a) agriculture politics definition; b) climatic change research; and c) contingency plans over weather extreme conditions. Even it is well known, but it is important to mention, that the data warehouse paradigm (in many cases) is better to derivate knowledge from the data in comparison to the database paradigm, a fact that was confirmed through the WDW exploitation.

1 INTRODUCTION

In this paper the implementation and use of a weather data warehouse (WDW) is presented. The data for constructing WDW was provided by the Mexican Institute for Water Technologies (IMTA by its initials in Spanish), the IMTA does research, development, adaptation, human resource formation and technology transfer to improve the Mexico’s water management, and in this way contribute to the Mexico’s sustainable development.

The motivation to construct WDW comes from the difficulties found to visualize across time and geographical dimensions in an IMTA’s database application called SICLIM (the input data for the data warehouse was taken from this application). It is expected that the weather data warehouse would enable the identification of weather trends and seasonality that could be useful for decision making processes related to agriculture, contingency plans, and climatic change research.

The rest of the paper is organized as follows: in section 2 the dimensional model for DDW is explained in detail, in section 3 the schema integration details are presented, in section 4 the obtained results are highlighted, and in section 5 the conclusions derived in the use and implementation of DDW are presented.

2 DDW DIMENSIONAL MODEL

The first accomplished step for WDW construction was the study of source data. The source data comes from the database application SICLIM, the entity-relationship model of the source database is presented in Figure 1, the database contains many catalogue tables (for Mexican political states,
hydrological regions, Watersheds and weather variable measuring stations).

With this model and the knowledge of IMTA researches we were able to identify the important data, as well as the dimensions and hierarchies required for the dimensional model.

The data identified included the values for rain, evaporation, maximum temperature, minimum temperature, temperature at 8 a.m., existence of storm, blizzard and fog. The cardinality of data, was daily values. The two dimensions identified were time, and a hierarchy for the monitoring stations into regions, watersheds and states.

Time dimension was easy to model, the initial value of the hierarchy was according to the cardinality of data, days, and the maximum element was years. The inside elements include month, two months period, quarter, four months period, semester, and station of the year. The resulting hierarchy is described on figure 2.

The Station Dimension include the monitoring station, the state, region and watershed the station belong. The basic element in the hierarchy was the monitoring station. However the hierarchy was more difficult to model than time, since a Region could extend through several states and a state can hold several regions. A watershed could also be contained in several regions inside one state, or through several
states inside one region. Due to this we needed to create a new hierarchy element named Entity which could contain regions and states. Also some stations didn’t belong to an specific watershed. The final hierarchy can be observed on figure 3.

3 SCHEMA INTEGRATION

The next step, was to design the strategy to migrate the data from the original data source to the data warehouse. The first step was to decide which technology use for database purposes. The original data from SICLIM was contained in Microsoft Access. The selected technology to store the final data warehouse was Microsoft SQL Server. The first step was to import the original data into a database in the selected Relational database management system.

Once migrated, the data contained several null values and zero values that could be easily identified as wrong values, for example a day with maximum temperature of zero with a minimum temperature above zero. The first step was to identify these records and generate a strategy to set them with proper values when possible.

For maximum and 8 a.m. temperature we checked for missing values or zero values when minimum temperature was greater then zero, we looked for neighbour values, and inserted the average between the two neighbour values. If neighbour values were missing, we moved to the next available values, and fill the missing values with values between the two valid neighbour values. For minimum temperature, we checked that it was not greater than maximum value and followed a similar strategy for wrong or null values. For zero values we checked for neighbour values, if no value 5 days before of after was 5 or less Celsius degrees above or below zero, then it didn’t sound possible for a zero value to be a valid one, and replaced with an average value of neighbour fields.

For raining and evaporation figure, the missing values were replaced for average values with neighbour fields, for zero values, we checked the previous and next 5 days, if none had a zero value, then it was modified accordingly to the previous and following values. Missing values for fog, storm and blizzard were declared as non existence of the event.

Next we needed to create and load the dimension tables, for the time dimension we used a program that automatically inserted a record for each day between the dates of January 1st, 1980 and December 31st, 1990. The Dimension key was

![Figure 2: Time Hierarchy.](image)

![Figure 3: Measure Station Hierarchy](image)

The star diagram of the dimensional model resulting from this dimensions and data is shown on Figure 4.

![Figure 4: Star Diagram for the Data Warehouse](image)
automatically generated using an automated seed value.

For the monitoring station dimension first we needed two group regions in two, first group regions that covered several states, second group regions present inside the borders of only one state. The same was to be done with watershed, according to the region they belonged to, and assign them to the specific group of its parenting region, or the state inside its parenting region. Next was to divide the monitoring stations in groups of those belonging to a watershed, those not belonging to a watershed but marked inside a region which would be subdivided accordingly to the extent of the region across states, and finally those not belonging to regions or watershed and assign them to the state they were located. Once it was done we created the entity that will identify each group, and copied each group into the monitoring station dimension table. Next step was to migrate the data from the database to the data warehouse, however some stations didn’t have values for all weather variables, even after the zero and null replacement. One station could have records for temperature, storm and blizzard, but not for rain, evaporation and fog. Other station didn’t have values for complete months of years in any variable. The missing values would be inserted as null, marking them not to participate in grouping operations.

4 RESULTS OBTAINED

The original database occupied around 600 MB in space, contained in average 726,000 records per variable table. The data warehouse contained 5,551 records for the monitoring station dimension, 14,975 records for the time dimension and 27,722,823 records in the fact table. The data warehouse occupied 6,886 MB in space.

Group information was easier to obtain, queries in SQL where easier to create, and the execution time was dramatically reduced, for example a query to obtain the average rain in a region per month, in the old database take about 12 minutes, the same query on the data warehouse only a few seconds.

About the information analysis, through a data visualization tool we were able to see and identify some trends in several regions and watersheds. For example in Lerma-Santiago watershed, the main raining season occurs from May to September and in the average temperature at 8 a.m. shows a really constant curve for a decade.

5 CONCLUSIONS

In this paper a data warehouse to store climatic Mexico variables was presented. Examples of graphs evidenced that, using the data warehouse paradigm it is easier to visualize information (through graphs), and to navigate over data (using the dimension hierarchies) in comparison to the traditional database approach.

One of the big advantages observed in exploiting the mentioned data warehouse is that complex grouping queries required using a database paradigm, reduce to moving through the hierarchies directed acyclic graphs. In this way the data warehouse information can be visualized in multiple ways, enabling the users to identify and to confirm: a) trends, b) patterns, and c) hypothesis, about Mexico’s weather variables. The knowledge derived is a key resource to decision making processes for every season, watershed, region or state.

The main findings enable the identification of dominant weather conditions, which could be useful for planning agricultural strategies according to climate conditions.

The dimensional model proved to be able to contain the data warehouse information for a query intensive application while still being capable of growth with data from other time periods or different climatic variables without any major future development.

REFERENCES

