A QUALITATIVE MODEL OF THE INDEBTEDNESS FOR THE SPANISH AUTONOMOUS REGIONS

Luis Jimenez, Juan Moreno-Garcia, Jose Jesus Castro-Schez, Victor R. Lopez, Jose Baños
Universidad de Castilla-La Mancha
Departamento de Informatica, Departamento de Economia y Empresa
E.S.I. de Ciudad Real, E.U.I.T.I. de Toledo, F.C.C.E. y E. de Albacete

Keywords: approximate reasoning, linguistic models, economy models, fuzzy logic.

Abstract: This work shows a fuzzy model of the indebtedness for the Spanish autonomous regions that is obtained using approximate reasoning and induction methods. So, the algorithm ADRI (M. Delgado, 2001; Jimenez, 1997) is used to induce a linguistic model composed by a set of fuzzy rules. The quality of this linguistic model will be checked and its interpretation will be shown.

1 INTRODUCTION

Currently, the technology offers the possibility to work efficiently with a lot of data. We can to use induction methods to detect the relations between several variables without previous hypothesis.

In this work we make use of an induction method to study the indebtedness for the Spanish autonomous regions from 1986 to 2000. Our aim will be to find the temporal relations among the indebtedness of a region in a year t and the non financial revenues and the type of interest of that year and the indebtedness of the region in the year $t-1$. To do this, we have a set of data owning to J. Baños, P. Cillero and V.R. López (J. Baños, 2001) that was obtained from several reliable source, Spanish National Bank, Ministry of Finance and Statistic National Institute and Statistic National Institute (INE).

Our intention is to obtain a model that, in one hand, will be understandable without difficulty, and in the other hand, can be directly developed from empirical observation. Thus, we are interested in techniques that obtain models given by using fuzzy rules with linguistic variables (Zadeh, 1975; M. Sugeno, 1991). We suggested make use of the induction algorithm ADRI (M. Delgado, 2001) in order to obtain the model that describes the run of the Spanish regions indebtedness. This algorithm obtains a set of linguistic rules from data.

The next section gives a background knowledge of the induction algorithm ADRI. In section 3 the model of the indebtedness for the Spanish autonomous regions is obtained. After that, an interpretation of this model is exposed in Section 4. Finally, the conclusions are shown.

2 ADRI: AN INDUCTION METHOD

ADRI is a generalization of the regression technique. Firstly, we show some definitions used in this paper and, after, we describe briefly the ADRI induction method.

Let $S = \{s_1, s_2 \ldots s_n\}$ be a set of data defined for the set of values that takes a set of variables $X = \{X^1, X^2 \ldots X^d\}$, thus, $s_i = \{x^1_i, x^2_i \ldots x^d_i, y_i\}$.

Let F be a function that only is known in the set S, such that, $F(s_i) = y_i$. The aim of the regression methods, expressed by means of a parameterized function F', is to minimize the distance between the real output value $y_i = F(s_i)$ and its estimated value using $F'(s_i)$.

The regression methods are different to the classification methods. The regression methods consider continuous output values instead of a set of categories in the classification methods. From this point of view, the classification methods could be considered a particularization of the regression methods. Methods based on the successive partitioning of the problem domain (for example, the decision trees ID3 (Quilan, 1986)) are used like technique of regression for restrictions in Classification and regression trees.
(CART) (J. Breiman, 1984).

CART is based on a sequence of questions and its possible answers (structured in tree form) over the variable values that define the problem. CART obtains a separate divisions \(SR = \{r_1, r_2 \ldots r_p \} \) of the domain of each variable of the problem. It splits the domains by means of the answers to the questions that carries out. The algorithm used in this work generalizes the divisions obtained in CART by means of fuzzy logic (Zadeh, 1965).

In this work, we build the Classification and Regression Fuzzy Tree for the Spanish regions indebtedness problem and obtain the searched model given by means of a set of fuzzy rules. It will be the parameterized function \(F' \) obtained by ADRI.

Now, we expose how the set of rules is obtained. Let \(A_T \) be a fuzzy set of the tree node \(T \) defined over the set of data \(S \). The root node contains all data of the set \(S \), and its membership function is \(A_T : S \rightarrow [0,1] \).

The output associated to the node \(T \) is defined using the membership grade \(A_T(s_i) \) of each data \(s_i \) and the output \(y_i \) (equation 1).

\[
F''(T) = \frac{\sum_{i=1}^{n} A_T(s_i)^m \cdot y_i}{\sum_{i=1}^{n} A_T(s_i)^m} \tag{1}
\]

where \(A_T(x) \) is calculated as \(\min_{i=1}^{d} A_T^j(x^i) \) and \(A_T^j(x^i) \) is the membership function of a fuzzy set defined over the domain of the \(j \)-th variable.

Equation 2 calculates the estimated error \(E(T) \) of a node \(T \).

\[
E(T) = \frac{\sum_{i=1}^{n} (F''(T) - y)^2 \cdot A_T(s_i)^m}{\sum_{i=1}^{n} A_T(s_i)^m} \tag{2}
\]

Now, our problem is how to establish a set of questions to divide the node \(T \). These questions are carried out for each variable, thus, a binary division of the node \(T \) is obtained for each one of the variables. We suppose binary division for the fuzzy set associated to the node \(T \) (by means of the fuzzy set \(A_T^j \) of the variable \(j \), that is, \(p_T^j = \{B(x), C(x)\} \)) where \(A_T^j = B(x) + C(x) \). This partition creates two new nodes and two new fuzzy sets associated to them (Equations 3 and 4).

\[
A_{T_1}(s_i) = \min(A_T(s_i), B(x^i)) \tag{3}
\]

\[
A_{T_2}(s_i) = \min(A_T(s_i), C(x^i)) \tag{4}
\]

Thus, the obtained rules with this fuzzy sets are:

IF variable\(^1\) **IS** \(A_{T_1} \) **THEN** . . .

ELSE

IF variable\(^1\) **IS** \(A_{T_2} \) **THEN** . . .

Following the ADRI algorithm, we obtain the proportion of the fuzzy sets \(B(x) \) and \(C(x) \) in relation to the fuzzy set \(A_T^j \) (Equations 5 and 6).

\[
P(T_1) = \frac{\sum_{i=1}^{n} B(x^i)}{\sum_{i=1}^{n} A_T^j(x^i)} \tag{5}
\]

\[
P(T_2) = \frac{\sum_{i=1}^{n} C(x^i)}{\sum_{i=1}^{n} A_T^j(x^i)} \tag{6}
\]

The quality of this partition is estimated with the equation 7.

\[
C(T, p_j) = (E(T_1)P(T_1)) + (E(T_2)P(T_2)) \tag{7}
\]

where \(p_j \) is the fuzzy partition of the \(j \)-th variable.

The selected partition is the one that has the minimum value \(C(T, p_j) \). This technique generates a hierarchical fuzzy partition in each one of the variables to obtain the questions. This process of division obtains the relevant variables to define the model. The mechanism of division is stopped when some condition is verified. In our case, the condition is that the error is less than a constant \(c \) (equation 8).

\[
ERROR = \max_{T \in \mathcal{T}} \{E(T)\} \leq c \tag{8}
\]

where \(\mathcal{T} \) is the set of tree leaves, thus, each leaves is a fuzzy region of the model.

Equation 9 calculates the final output value for each input value \(s_i \).

\[
F''(s) = \frac{\sum_{T \in \mathcal{T}} A_T(s)^m \cdot F''(T)}{\sum_{T \in \mathcal{T}} A_T(s)^m} \tag{9}
\]

Figure 1: Indebtedness for Spanish autonomous regions from 1986 to 2000

The interested reader is referred to M. Delgado (M. Delgado, 2001).

3 INDEBTEDNESS MODEL

We want to obtain a model that shows the indebtedness for the Spanish autonomous regions from
1986 to 2000 (Figure 1). The output variable (the modelled variable) is the indebtedness for the Spanish autonomous region in the year \(t \), and the input variables are the region indebtedness of the previous year \(D/P\text{IB}(t-1) \), the non financial revenues \(INF/P\text{IB}(t) \) and the type of interest \(T(t) \). Thus, the searched function \(F \) is shown in Equation 10.

\[
F(D/P\text{IB}(t-1), INF/P\text{IB}(t), T(t))
\]

(10)

The fuzzy model \(F' \) is developed using the Classification and Regression fuzzy tree (ADRI). A fuzzy rule consist of two components, the first one is the antecedent and the second one is the consequent. These components show the cause-effect relation. The antecedent is formed for aggregation of fuzzy propositions, such as \(X \) is \(A \), where \(X \) is the input variable and \(A \) is the fuzzy set defined over its domain. In this work, the membership function of the fuzzy sets are trapezoidal functions (see Equation 11). This membership function is adequate for our problem due to it is easy to construct from the fuzzy sets obtained by using ADRI (ADRI is defined over trapezoidal sets). The change to other membership function not implies substantial modifications.

\[
A(x, a, b, c, d) = \begin{cases}
 0 & x \leq a \\
 \frac{x-a}{b-a} & a < x < b \\
 1 & b \leq x \leq c \\
 \frac{d-x}{d-c} & c < x < d \\
 0 & x \geq d
\end{cases}
\]

(11)

Our aim is to define a system of linguistic rules, since linguistic labels must be associated to each one of the fuzzy sets in which is divided the domain of each input variable (Tables 1, 2 and 3). Each row of these tables define a linguistic value. The numbers which appear in the first column of the tables are the values that define the trapezoidal function of the linguistic value given in its associated second column. Thereby, we get a set of linguistic variables (Zadeh, 1975).

<table>
<thead>
<tr>
<th>Table 1: Linguistic Variable D/P\text{IB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8.00, 8.48, MAX, MAX]</td>
</tr>
<tr>
<td>[6.45, 7.20, 8.00, 8.48]</td>
</tr>
<tr>
<td>[3.53, 4.50, 6.45, 7.20]</td>
</tr>
<tr>
<td>[1.50, 2.10, 3.53, 4.50]</td>
</tr>
<tr>
<td>[0.80, 1.10, 1.50, 2.10]</td>
</tr>
<tr>
<td>[0.40, 0.60, 0.80, 1.10]</td>
</tr>
<tr>
<td>[MIN, MIN, 0.40, 0.60]</td>
</tr>
</tbody>
</table>

The model acquired by ADRI may be observed in Table 4. Each row is a rule with \(EB \) is Extremely Big, \(VB \) is Very Big, \(B \) is Big, \(N \) is Norm, \(S \) is Small, \(VS \) is Very Small and \(ES \) is Extremely Small. These rules are arranged in a decreasing way according to the percentage of data that are correctly classified by the rule. The first number indicates the index of the rule, the following four are the values that the input variable take, the sixth the rule error and the last percentage of instances that has been correctly classified. Thus, the rule 10 covers the 7.4% of the data, it has a error of 0.04%, and it could be read as:

\[
\text{IF } D/P\text{IB}(t-1) \text{ is Big AND } INF/P\text{IB}(t) \text{ is Small AND } T(t) \text{ is Small THEN } D/P\text{IB}(t) \text{ is 4.55}
\]

Now, let us look at how the model responds to a situation. Table 5 shows how is carried out the inference from the data about Andalusia in 1993. Each row of this table is a rule of the model (see Table 4). The first number indicates the index of the rule, the following three are the values that the input variables \(D/P\text{IB}(t-1), INF/P\text{IB}(t) \) and \(T(t) \) take in each rule (value 1), the fifth the minimum membership grade for the input variables and the last value of the output variable. The real output is \(D/P\text{IB}(t) = 6.6 \). The data about Andalusia, input of the model, are 5.3, 18.96 and 10.17 for the input variables \(D/P\text{IB}(t-1), INF/P\text{IB} \) and \(T(t) \) respectively. The output value obtained by the model is \(D/P\text{IB}(t) = 6.23 \).

The cell \((1, D/P\text{IB}(t-1)) \) contains the membership grade of the value 5.3 to the fuzzy set \([0.80, 1.10, 1.50, 2.00] \) labelled as \(Small \). The value into the cell \((9, \text{min}) \) represents the minimum value of the membership of the input values to the rule 9 (row 9). The cell value \((9, D/P(T)) \) is the output of the rule 9 multiplied by the cell value \((9, \text{min}) \). The output value is the weighted average of all outputs times the \(\text{min} \) column.

In Figures 2 to 16 we show the predictive performance of the model. Each Figure presents the results of a Spanish region, the real and obtained indebtedness \((\hat{Y}_{axi}s) \) in each year \((X_{axi}s) \). The real indebtedness is represented by a continuous line. The
discontinuous line is the obtained indebtedness using the presented method.

The Spanish regions indebtedness in the year 2001 have been inferred making use of the model (see Table 5) and composed with the real values. In Table 6 we show the result obtained, where each row is a Spanish region (A.R.), $D(t-1)$, $I(t)$ and $T(t)$ are the input variables $D/P IB(t-1)$, $INF/P(t)$ and $T(t)$ respectively, and $Ob\ D(t)$ and $R.\ D(t)$ are the obtained and real output variable $D/P IB(t)$.

4 INTERPRETATION OF THE MODEL

The obtained model allows to make an analysis of the indebtedness for the Spanish autonomous regions from 1986 to 2000. The aim of our analysis is double: in one hand, find the rules that define the most of the study cases; and in the other hand, get the influence of each one of the input variables in the indebtedness prediction problem.

We can observe that the rules 13, 12, 1, 7 and 6 classify correctly the 11.4%, 10.23%, 9.38%, 6.78% and 3.98% of the whole set of cases respectively, i.e., 36.36%. On the other hand, we can also observe that the output of the model $(D/P IB(t))$ in this rules only depend on the value of the input variable $D/P IB(t-1)$. Thus, the behavior of the $D/P IB$ value in time t is very dependent of the value in time $t-1$. It causes an inertial behavior to the model, that is, when the variable input $D/P IB(t-1)$ has small, medium or big values the output value is small, medium or big.

The rules 5, 4 and 2 (whose antecedent depend on the variables $D/P IB(t-1)$ and $T(t)$) classify correctly the 10.74%, 8.83% and 2.30% of the whole set of cases, i.e., 21.87%. This means that the $D/P IB(t)$ value is corrected by the $T(t)$ values when the $D/P IB(t)$ values are $Norm$ or Big.

Finally, the $INF/P IB(t)$ variable is used in the 36.36% of the data.

Thus, we deduce that the indebtedness for the Spanish autonomous regions in a year t depend on basically of the indebtedness for the Spanish autonomous regions in a year $t-1$, lightly corrected for the type of interest and minorly for the non financial revenues.

5 CONCLUSION

This work presents a methodology to define models. This methodology don’t need knowledge a priori, except in the variable definition. This methodology uses induction technique to obtain the models that are qualitative and are based on fuzzy logic.

To validate the methodology we obtain a linguistic model of the indebtedness for the Spanish autonomous regions. A brief analysis is doing to show the behavior of the model. Of the obtained result we conclude that the methodology obtains a good first approximation to the searched model. The understanding of the model is possible because the model is qualitative (linguistic labels).
Table 6: Indebtedness values obtained by the model for each Spanish region in the year 2001

<table>
<thead>
<tr>
<th>A.R.</th>
<th>D(t-1)</th>
<th>I(t)</th>
<th>T(t)</th>
<th>Ob. D(t)</th>
<th>R. D(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An.</td>
<td>8.58</td>
<td>20.44</td>
<td>4.5</td>
<td>8.9668</td>
<td>8.8213</td>
</tr>
<tr>
<td>Ar.</td>
<td>4.88</td>
<td>10.23</td>
<td>4.5</td>
<td>5.1806</td>
<td>4.8286</td>
</tr>
<tr>
<td>As.</td>
<td>4.05</td>
<td>7.10</td>
<td>4.5</td>
<td>3.9534</td>
<td>3.9212</td>
</tr>
<tr>
<td>B.</td>
<td>1.85</td>
<td>5.93</td>
<td>4.5</td>
<td>2.8687</td>
<td>1.6450</td>
</tr>
<tr>
<td>Cn.</td>
<td>3.30</td>
<td>16.47</td>
<td>4.5</td>
<td>5.1041</td>
<td>3.3405</td>
</tr>
<tr>
<td>Ct.</td>
<td>3.08</td>
<td>10.24</td>
<td>4.5</td>
<td>3.2585</td>
<td>2.9857</td>
</tr>
<tr>
<td>CL.</td>
<td>2.95</td>
<td>13.12</td>
<td>4.5</td>
<td>3.2837</td>
<td>2.9152</td>
</tr>
<tr>
<td>CM.</td>
<td>2.93</td>
<td>12.71</td>
<td>4.5</td>
<td>3.2837</td>
<td>2.8815</td>
</tr>
<tr>
<td>Cat.</td>
<td>8.70</td>
<td>11.11</td>
<td>4.5</td>
<td>8.9668</td>
<td>8.7626</td>
</tr>
<tr>
<td>CV.</td>
<td>9.58</td>
<td>12.69</td>
<td>4.5</td>
<td>8.9668</td>
<td>9.6902</td>
</tr>
<tr>
<td>E.</td>
<td>5.83</td>
<td>15.17</td>
<td>4.5</td>
<td>5.426</td>
<td>5.9000</td>
</tr>
<tr>
<td>G.</td>
<td>8.68</td>
<td>19.11</td>
<td>4.5</td>
<td>8.9668</td>
<td>8.8971</td>
</tr>
<tr>
<td>M.</td>
<td>4.48</td>
<td>6.36</td>
<td>4.5</td>
<td>4.4296</td>
<td>4.2426</td>
</tr>
<tr>
<td>Mu.</td>
<td>4.30</td>
<td>10.38</td>
<td>4.5</td>
<td>4.758</td>
<td>4.3415</td>
</tr>
<tr>
<td>R.</td>
<td>2.93</td>
<td>8.91</td>
<td>4.5</td>
<td>3.1953</td>
<td>2.8055</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

This work has been funded by the Spanish Ministry of Science and Technology and Junta de Comunidades de Castilla-La Mancha under Research Projects 'DIMOCUST' TIC2003-08807-C02-02 and PREDACOM PBC-03-004.

REFERENCES

