
DIFFICULT ISSUES IN DESIGNING ADAPTIVE OBJECT MODEL
SYSTEMS

Yun Mai and Jinmiao Li and Greg Butler
Computer Science Department, Concordia University

Montreal, Canada

Keywords: Adaptive Object Model, Reflection, Software Architecture, Repository-based Software Design.

Abstract: The adaptive object model enables a system to change its behavior at run-time without re-programming. It
provides an extremely extensible architecture solution for large software systems. As a particular kind of
reflective architecture, the core of the adaptive object model encapsulates changeable system properties and
behaviors as meta-information. Changing the meta-information reflects changes in the domain. However, this
approach leads to a more complex design compared to a traditional object-oriented design and thus its im-
plementation is difficult for developers. This paper provides a general design model that compiles techniques
proposed by existing adaptive systems and models. The core of the design model is based on a layered archi-
tecture. The paper starts from a high level view of the architecture. It then zooms in different components.
Major issues in designing various components are fully discussed. General design solutions are elicited as a
result of the discussions.

1 INTRODUCTION

Evolution of a software system is hard. To design a
system with future changes in mind becomes an art of
software design. If a system is designed in a flexible
way then it is still possible to minimize changes that
might undermine the original system architecture. A
powerful solution to make a system extremely flexi-
ble and adaptive is to use the adaptive object model
(Foote and Yoder, 1998a; Foote and Yoder, 1998b;
Foote and Yoder, 2001; Revault and Yoder, 2001).
The model allows an application system to be easily
extended and changed at run-time without changing
the existing program.

Normally, a system designed with an adaptive
object model is hard to understand and develop.
Many papers reinforce the concepts on adaptive ob-
ject model from different perspectives with examples
(Johnson, 1997; Manolescu and Johnson, 1999; Mar-
tin et al., 1998; Riehle et al., 2000). But since the
adaptive object model is most suitable to be used in
large systems (otherwise, the system can be easily dis-
carded and re-built from scratch) and it is very expen-
sive to build one, there are not many industry practices
that can best demonstrate how systems are built with
adaptive object model. One of the well-known suc-

cessful practices on adaptive object model is the Argo
framework (Devos and Tilman, 1998). The system is
very large and flexible, but its design is very complex
compared to a traditional object-oriented design ap-
proach.

Designing an adaptive object model system is com-
plex and difficult. It is therefore necessary to provide
a design paradigm for implementing such a system.
This paper unfolds the difficult issues in adaptive soft-
ware system design. By compiling techniques pro-
posed by existing adaptive object model systems, the
paper captures and highlights major design issues and
provides generic design solutions. The rest of the pa-
per is organized as follows: Section 2 is the state of
art of the adaptive object model. Section 3 provides
the software architecture and its key features. Sec-
tion 4 discusses various design issues in the software
architecture. Section 5 concludes this paper.

2 RELATED WORK

In recent years, many works have been devoted to the
adaptive object model (AOM). The Reflection pat-
tern (Buschmann et al., 1996), Accountability pat-
tern (Fowler, 1997), and Type Object pattern (Mar-

295
Mai Y., Li J. and Butler G. (2004).
DIFFICULT ISSUES IN DESIGNING ADAPTIVE OBJECT MODEL SYSTEMS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 295-302
DOI: 10.5220/0002614202950302
Copyright c© SciTePress



tin et al., 1998) are fundamental technologies of the
adaptive object model. The Dynamic Object Model
pattern (Riehle et al., 2000) captures the basic logical
architecture for the adaptive object model. Detailed
logical architecture designs are presented in (Yoder
et al., 2001a; Yoder et al., 2001b; Yoder and Johnson,
2002).

To allow a software application to change its
behavior on the fly, a well-known solution is to
build the system as a so-called “reflective architec-
ture” (Buschmann et al., 1996; Forman and Danforth,
1998; Fowler, 1997). A reflective architecture defines
a self-descriptive adaptive software system by logi-
cally splitting the system into two parts: a base level
and a meta level. The base level defines the domain
application logic, while the meta level encapsulates
and represents system structure and behavior informa-
tion by defining metaobjects. Changes to metaobjects
kept in the meta level affect subsequent base level be-
havior (Buschmann et al., 1996). In addition to split-
ting a system into two levels, an interface, called the
Metaobject Protocol (MOP), has to be defined to al-
low clients to specify and manipulate changes to the
system. Figure 1 shows the general structure of a re-
flective architecture.

Component

MetaObject Metaobject Protocol (MOP)

Meta Level

Base Level

Figure 1: Reflective Architecture

The adaptive object model is a particular kind of re-
flective architecture. The core of the adaptive object
model is the Type Object pattern (Martin et al., 1998).
Type Objects explicitly represent type information as
instances of a class, namely type class or meta class.
Therefore, the type information can be created and
modified dynamically at run-time, just like any ma-
nipulation of objects in a traditional object-oriented
system. All type information are encapsulated in the
meta level so that changes to the meta information
reflect changes to the system behavior. In addition,
attributes, relationships, and behavior of a class are
normally represented separately from the class itself.
These approaches can be achieved by applying some
patterns such as the Property pattern (Riehle, 1997)
and Strategy pattern (Gamma et al., 1995). The Type
Object pattern, Property pattern, Strategy pattern, and
Value Holder pattern (Foote and Yoder, 1998a; Woolf,
1994) together form a Type Square (Balaguer and Yo-
der, 2001; Yoder et al., 2001a), which is the core

architecture of the adaptive object model (Johnson,
1997; Yoder et al., 2001a; Yoder et al., 2001b; Yo-
der and Johnson, 2002). Figure 2 shows the core ar-
chitecture of the adaptive object model. In addition
to the software patterns presented above, other pat-
terns may also be used to build a real adaptive sys-
tem. They are specific to system requirements and
design implementation. Examples of such patterns
include Organization Hierarchy (Fowler, 1997), His-
tory (Johnson and Oakes, 1998) (also Historic Map-
ping (Fowler, 1997)), Rule Object (Arsanjani, 1998;
Arsanjani, 2000; Arsanjani, 2001), Serializer (Riehle
and et al., 1998)etc.

Entity

EntityType

Property

PropertyTypeBehavior

Value

Figure 2: Core Architecture of the Adaptive Object Model

There are some successful industry experiences in
using the adaptive object model including the well-
known Argo framework and Objectiva framework.
Argo is a framework that is used to develop appli-
cations for a semi-government organization manag-
ing several hundred public schools. The framework
behavior is driven by a repository. New applications
can be developed through modeling and configuration
rather than through coding (Devos and Tilman, 1998).
Objectiva is a framework that is used to develop ap-
plications for telecommunication billing. It aims to
develop a single billing system to handle any kind of
telecommunication service (Anderson and Johnson,
1998).

3 SOFTWARE ARCHITECTURE

There are two key architecture features in a system
designed with the adaptive object model: metadata
driven and layered architecture.

3.1 Metadata Driven

An adaptive system is a system that could adapt itself
to requirement changes and system changes on the fly.
Such a system is self-describable. It maintains infor-
mation about system itself and uses this information
to remain changeable and extensible. The foundation
of the adaptive object model is the Type Object pat-
tern (Martin et al., 1998). As described in Section 2,
object types are represented as objects (named type

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

296



objects) and processed like any objects. By chang-
ing the type objects at run-time, system behaviors and
states are changed accordingly.

An adaptive object model system is an open meta-
data driven software system. The system contains
a repository for different information (Devos and
Tilman, 1998; Forman and Danforth, 1998):
• Domain objects

These objects are about the knowledge of an ap-
plication domain. For example, in a university
management system, domain objects can be ob-
jects representing students, professors, administra-
tion, faculties, etc.

• Meta-information
These are information about the object model that
describes the domain object types and their rela-
tionships. They can be information about the ap-
plication structures, business models, user views,
etc.
The repository contains all information about an

application domain, the domain model, and the model
description itself. The repository is accessible at run-
time so by changing the meta-information, the system
becomes adaptive.

3.2 Layered Architecture

Layering is a common design technique to break
down a complex system. It reflects the “divide and
conquer” principle and helps to minimize subsystem
dependencies. A lower layer provides services to the
layer above it. A layered system can be easily under-
stood in isolation and be substituted easily. An adap-
tive object model system can be broken down into
three layers: Front Room, Presentation Server, and
Back Room. Figure 3 shows its layered architecture.
• Front Room is a subsystem that provides services

to the end user. It includes a set of presentation
tools such as data access tools, query management,
end-user applications, tools for configuration and
administration, etc.

• Presentation Server is a subsystem that maintains
a repository for object model and domain ob-
jects. It contains some managers that handle ob-
ject caching, query, transaction and lock. Presenta-
tion Server interacts with Back Room subsystem to
read/write data from/to different data stores.

• Back Room is a subsystem interacting with data
sources. There are two abstraction layers in this
subsystem. Data Mapping Engine maps the in-
memory data (such as in-memory objects) into
an abstract representation (logical data represen-
tation). Persistency Engine then maps the logical
data representation to its physical storage (physi-
cal data representation). Data Mapping Engine has

no knowledge of any physical data storage detail,
while Persistency Engine has no knowledge of the
in-memory data format.

 

Front Room 

Presentation Tools 

Presentation Server 

Back Room 

Data Mapping Engine 

Persistency Engine 
Data Source 

Systems 

Figure 3: Layered Architecture for AOM

4 MAJOR DESIGN ISSUES OF
THE AOM ARCHITECTURE

In this section, we follow the software architecture
structure presented above and further discuss major
issues that may be encountered in each part of the lay-
ered architecture design.

4.1 Front Room

Front Room refers to some tools and applications that
provide interactive interfaces to end users. First of
all, there are end-user applications that provide main
functions to the end user for daily processing. In addi-
tion, administration and configuration tools have to be
provided to allow the authorized high-level end user
to monitor and change objects (including meta ob-
jects) in the repository. There are some issues related
to the object manipulation in the Front Room.

Issue 1: User Authorization Issue

Since a change of an object in the repository can cause
an end-user application to change its behavior, it must
be careful to provide authentication rule for only au-
thorized users to do so. Roughly, we divide end users
into two groups: operator only runs and uses the end-
user applications, while administrator not only is able
to run end-user applications but also can use configu-
ration and administration tools to browse objects, add
new objects, and change existing objects. Figure 4
shows the use case diagram.

DIFFICULT ISSUES IN DESIGNING ADAPTIVE OBJECT MODEL SYSTEMS

297



 

End-user Applications 

Configuration and 
Administration 

Operator 

Administrator 

Figure 4: Use Case Diagram for the AOM System

Issue 2: Object Configuration Issue

A typical object configuration scenario in an adaptive
object model system is: the user creates some crite-
ria to search for an object, upon receival of a set of
matched objects, the user picks one and displays its
properties for browsing or configuration. The more
adaptive a system is, the more objects have to be
stored for configuration. We want to store as much
information as possible for configuration. But to pro-
vide customized forms for every object to be browsed
and configured is a daunting task.

To minimize the workload in creating object brows-
ing and configuration forms, factoring out common
objects and common properties is very important. It is
generally a good practice to provide a common object
query window and a common object browsing win-
dow, and for each object, a separate window can be
created to show object properties. Creation of object
property windows should take advantage of the Type
Object pattern so that all object properties can be re-
trieved and displayed via object introspection. In ad-
dition, rules and constraints should be defined to en-
sure object integrity. Some adaptive systems such as
Argo (Devos and Tilman, 1998) and Objectiva (An-
derson and Johnson, 1998) provide good examples in
designing configuration and administration tools.

Issue 3: End-User Programming

The adaptive object model differs from traditional ob-
ject model in that the system behavior can be changed
at run-time. This is achieved by providing a simple
domain-specific language (such as scripts), so sophis-
ticated users can modify existing object behavior or
add simple behavior for newly created types without
re-deployment. The domain-specific language can be
used to specify process rules, class behavior, and var-
ious constraints. A specialized compiler should be
provided to parse the scripts into an abstract syntax
tree or rule objects (Arsanjani, 2000), which will be
stored and interpreted for run-time execution.

4.2 Presentation Server

Presentation Server is the middle tier in the adap-
tive object model software architecture. It bridges
the Front Room and the Back Room. Presentation
Server provides a data repository that manages the in-
memory information. As a data container, there are
some important design issues about its capacity, oper-
ation performance, data load and update, etc.

Issue 1: Performance Issue

As stated before, Presentation Server is essentially an
in-memory repository that contains domain objects
that describe the application domain and the meta-
objects that specify the meta-information. On one
hand, all information about the application domain
and the system itself need to be stored as objects in
the repository. On the other hand, the repository is
an in-memory data container and will have a limited
capacity. It is impossible to store all objects in mem-
ory in most cases. Therefore, some objects have to
be loaded on demand. If the user issues an operation
and most related objects are not in memory, the sys-
tem has to load the meta-objects, and then the domain
objects. It is inevitable that the user will perceive a
significant delay.

To solve this problem, we need a Cache Manager.
The Cache Manager will implement a certain num-
ber of caching strategies. So at run-time, depending
on the operation context, a caching strategy is chosen
and objects are loaded implicitly on demand under
unawareness of the end user. When an object is re-
quested, the cache (in-memory repository) is checked
first, if the object exists it is returned to the appli-
cation; otherwise, the Cache Manager is responsible
for loading it from the persistent storage (by send-
ing requests to the Back Room). The Cache Manager
decides what objects to be pre-stored in the reposi-
tory according to a caching strategy or a combina-
tion of multiple caching strategies. With fine tuned
caching strategies, the performance for data access in
the adaptive system is improved.

Another performance issue is when to create ob-
jects in the in-memory repository. If objects are be
created/loaded on demand, we will face the same per-
formance problem since creating/loading a large num-
ber of objects will be expensive. A solution is to bulk
load objects into the repository initially. A caching
strategy will determine which objects to be loaded at
boot and a bootstrapping process will interact with the
Cache Manager to bulk load objects when the Presen-
tation Server is up.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

298



Issue 2: Concurrence Access Issue

Since objects are cached in the in-memory repository
(and stored in some persistent storages too), it is risky
that multiple concurrent updates could be made to the
same properties of some objects in a distributed envi-
ronment. So the issue is, how can we control accesses
to the objects so that they will not be left in inconsis-
tent states if multiple manipulations occur?

One straightforward and commonly used solution
is to use transactions and locks. All data operations
must be performed within the context of a reposi-
tory transaction that keeps track of local changes to
one or more objects. Once committed, a transaction
is translated into underlying database operations and
transactions (Devos and Tilman, 1998). Furthermore,
to avoid any accidental corruption of data integrity, a
locking mechanism is necessary. The Locking Man-
ager is responsible for ensuring that object properties
are correctly locked in a transaction.

Issue 3: Data Consistency Issue

Another problem with object manipulation is object
inconsistency. When an object configuration changes,
all objects depending on this object may need to be
changed accordingly. Some data structures such as
Direct Acyclic Graph (DAG) (Shaffer, 1997) can be
used to manage the object dependency relationships.
Should all dependent objects (both in the in-memory
repository and in physical data stores) change imme-
diately, or in-memory objects change first while the
others change only when they are loaded? When an
object is not referenced any more, should it be de-
stroyed and when? There are many small issues re-
lating to data consistency. The solution somewhat de-
pends on the system requirements (e.g. performance
requirements and organization policies). A compo-
nent named Consistency Manager can be designed to
encapsulate the solution for these issues.

Issue 4: Version Control Issue

Object manipulation also brings up an interesting
topic on object history management. When an object
configuration changes, should we maintain its his-
tory? This can be up to a system requirement. But,
a good practice is to keep the versions of the object
because they are always useful and desirable. For ex-
ample, if an organization changes one of its statistics
forms to a new format since May 1, 2003, should all
forms (with data) before this date be changed to adapt
to the new form format? Normally, people would like
to display the old data with the old form, while dis-
play the new data with the new form. In such case,
it is important to keep both the new and old form

formats in order to interpret different data. A Ver-
sion Control Manager component is used to control
object versioning. It is responsible for associating
meta-data version information with the corresponding
base-level versioned data, and choosing an appropri-
ate meta-data version to correctly interpret the associ-
ated versioned data.

 

Repository 

Transaction 
Manager 

Query 
Manager 

Presentation Tools 

Presentation Server 

Data Mapping Engine 

Bootstrap 
Manager 

Version 
Control 

Manager 

Consistency 
Manager 

Lock 
Manager 

Cache 
Manager 

Figure 5: Presentation Server Architecture

Design Discussion

Figure 5 shows the high-level design of the Presen-
tation Server subsystem. The core of this subsystem
is the Repository package. It handles any access to
the in-memory repository. The data contained in the
repository are partitioned into type objects and nor-
mal objects constructed according to Figure 2. There
are some other auxiliary packages such as Transac-
tion, Query, Caching, Locking, Bootstrapping, Ver-
sion Control, and Data Consistency, that interact with
the Repository to help control access to and populate
the repository. Each auxiliary package can define a
manager that provides the main functionality for that
package. The behaviors are illustrated in Figure 6 for
executing a query and Figure 7 for executing a con-
figuration command.

: QueryMgr: FrontRoom::Tool : RepositoryMgr : BackRoom::Mapper

query()

query()

load()

: CacheMgr

load()

check()

VersionMgr

checkVersion()

Figure 6: Sequence Diagram for User Query

DIFFICULT ISSUES IN DESIGNING ADAPTIVE OBJECT MODEL SYSTEMS

299



: TransactionMgr

: FrontRoom::Tool

: RepositoryMgr

: BackRoom::Mapper

update()

update()

: LockMgr

update()

update()

getLock()

VersionMgr

ConsistencyMgr

updateVersion()

updateDependences()

update()

Figure 7: Sequence Diagram for User Configuration

4.3 Back Room

An adaptive object model system is a kind of
repository-based system, that is, the application’s be-
havior is driven by the repository. Therefore, we need
a persistency mechanism to protect the repository in-
formation from loss. Back Room is such a subsystem
to handle data persistency in the AOM architecture.

Issue 1: Model Persistency Issue

A traditional system only stores application data (do-
main information) into persistency. In an AOM sys-
tem, only store domain information are not enough.
To avoid any loss of the meta-information, we also
need to store them to a persistency media. In other
words, we not only store application information (do-
main objects) as persistency, but also store meta-
objects as persistency.

Issue 2: Data Storage Issue

As discussed above, application information such as
objects, code-based rules or constraints, different for-
mats of domain information, should be stored in the
persistent storage. Different information may re-
quire different data storage carriers. Typical data
stores include object-oriented database systems, re-
lational database systems, XML (Extensible Markup
Language) documents, flat files, and so forth. For
an object-oriented software system, object-oriented
database is a straightforward solution for object stor-
age. XML file format is an alternative solution be-
cause there exist many ready-to-use XML tools (e.g.
SAX and DOM parser) that simplify data process
and speed up system development. But for rela-
tional database, an object-relational mapping mech-
anism should be provided to handle the data trans-
formation between in-memory objects and relational
data. The following will give a more detailed discus-
sion on the object-relational mapping.

Issue 3: Persistency Access Issue

Since there are different data storage formats, ac-
cess to persistent storage varies greatly. The problem
is, if such chunk of connectivity code has to be re-
peated wherever a persistency connection is required,
it tightly couples the application and the data sources
so that migration from one type of data source to an-
other is difficult.

DAO

RelDbDAO OODbDAO

XMLDAO

+load()
+update()
+insert()
+remove()

Mapper

RelDbMapper

OODbMapper

XMLMapper

Data Access

Figure 8: Persistency Access with Data Access Object
(DAO) Pattern

Data Access Object (DAO) (Sun Microsystems
Inc., 2003) aims to solve persistency access problem.
A DAO encapsulates all accesses to a data source. In
an AOM system, we can create a DAO class and sub-
class it with concrete DAOs that handle different data
storage types. One concrete DAO is responsible for
handling any access to objects stored in that corre-
sponding media type. Figure 8 (grey area) shows an
example.

Issue 4: Persistency Mapping Issue

If objects are stored to the same persistency media,
they will share the same DAO. But, how can the DAO
tell the differences of the objects it is going to handle?

A DAO cannot tell the differences of the objects.
All objects must be processed before they are for-
warded to a DAO. A mapping mechanism must be
provided in order for a DAO to correctly process the
objects. Figure 9 shows an example of a mapping en-
gine.

+load()
+update()
+insert()
+remove()

Mapper

RelDBMapper

OODBMapper

XMLMapper

Metadata Mapping

-dataClass : Class
-tableName : String
-columnMaps : List

TableMap
-columnName : String
-fieldName : String
-field : Field
-dataMap : TableMap

ColumnMap

*
*

Figure 9: Persistency Mapping with MetaMapping Pattern

Our goal is to map objects in storage to objects
in memory. As shown in Figure 9, by applying the

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

300



MetaData Mapping pattern (Fowler, 2002), relational
database mapper defines a Table Map class which
maps each data class to its table name, and a Col-
umn Map class to maps data class field types to table
column names. By using the information provided
by Table Map and Column Map, the application is
easy to flatten an object and store it into relational
database or assembly it when retrieve it from rela-
tional database. Figure 10 shows a scenario that how
an object is loaded from relational database system.

: RelDbMapper : TableMap : ColumnMap : RelDbDAO
: PresentationServer

:: CacheMgr

load()

getTableInfo()

getColumnInfo()

load()

Figure 10: Sequence Diagram for Data Load from Rela-
tional Database

Design Discussion

Figure 11 shows a common high-level design of the
Back Room subsystem. Back Room contains two lev-
els of data abstraction. The top level, Data Mapping
Engine, is the one for logical data mapping. The bot-
tom level, Persistency Engine, is for physical data ac-
cess. Data Mapping Engine is responsible for map-
ping in-memory information to logical data represen-
tation. The repository not only contains objects, it
also contains documents, images, videos, etc. Ac-
cording to the information stored in the repository,
different data mapping engines should be provided.
In general, we can define two kinds of data mapping
engines to handle two major data catalogs.

 

Object Mapping 
Engine 

Persistency 
Engine 

Data Source Systems 

Presentation Server 

Back Room 

Document-based 
Mapping Engine 

Figure 11: Back Room Architecture

Firstly, an Object Mapping Engine can be defined
to map in-memory objects and their properties to their
logical data abstraction. These in-memory objects
may includes user-defined domain objects, objects in
the object model and meta model, rule objects repre-

senting process rules, class behavior, and various con-
straints, as well as system utility objects.

Secondly, for documents processing, a separate
mapping engine can be defined to handle document
specific mapping. Document processing can be seen
in many workflow systems, we will not further dis-
cuss them in this paper.

Finally, since a physical data access process is
data storage type specific, we can define different
media-dependent components in the Persistency En-
gine. Persistency Engine consists of a hierarchy of
DAO objects which handle data storage type specific
data load and data store.

5 CONCLUSION

To change a system is hard. The adaptive object
model makes it easy to adapt a system to new changes.
Although people complain it is hard to understand
the adaptive object model and to develop a system
with it, we still consider it worthwhile to regard it
as a potential architecture and to invest in it, because
the payback in terms of flexibility and ease of evo-
lution has great value. In an adaptive object model
system, everything is an object including the system
aspects that describe the business model and that de-
scribe the model itself. Since objects can be created
and modified at run-time, it is easy to change the sys-
tem behavior and extend a system using a common
object browser and configuration tool platform. Thus,
no programming practice is required to make such
changes. The drawback of using the adaptive object
model is that it is hard to debug the system behavior
since object interaction is implicit due to the reason
that the interaction is encapsulated into object config-
uration. Still, such a system can be hard to maintain
if the model is not clear or the components of the sys-
tems design are not clear. Hence, the need for a soft-
ware architecture and design guidelines is imperative.

The main contribution of this paper is that it ad-
dresses the complexity and difficulty of developing an
adaptive software system. By compiling techniques
proposed by existing adaptive object model systems,
the paper captures and highlights major design issues
and provides generic design solutions. One differ-
ence between the solution proposed in the paper and
other papers is that we define a layered architecture
for the adaptive system. Layering de-couples interac-
tions between subsystems so that it is easy to plug in
or to replace a subsystem. The architecture is com-
pletely metadata-driven. We discussed various com-
ponents in the system and difficult issues that have
to be considered when designing a system with the
adaptive object model. The paper unfolds difficult
design issues towards an implementation of an adap-

DIFFICULT ISSUES IN DESIGNING ADAPTIVE OBJECT MODEL SYSTEMS

301



tive software system with the adaptive object model.
The guidelines suggested in this paper will help soft-
ware designers to address major design problems in-
herent in the adaptive system design. Using adap-
tive object model may introduce certain performance
penalty. We will consider various means to improve
it in our future work.

REFERENCES

Anderson, F. and Johnson, R. (1998). Objectiva Architec-
ture. UIUC’98 MetaData Pattern Mining Workshop,
Urbana, IL.

Arsanjani, A. (1998). Meta-Modeling and Grammar-
oriented Object Design. OOPSLA 98 Workshop on
Metadata and Active Object Model.

Arsanjani, A. (2000). Rule object: A Pattern language
for Adaptive and Scalable Rusiness Rule Construction
(Part 1: Rule Object). Proceeding of PLoP 2000.

Arsanjani, A. (2001). using Grammar-oriented ob-
ject Design to Seamlessly Map Business Models to
Component-based Software Architectures. Proceed-
ing of the International Association of Science and
Technology for Development. Pittsburgh, PA, USA.

Balaguer, F. and Yoder, J. W. (2001). Adaptive
Object-Model Architecture. OOPSLA 2001 Adap-
tive Object-Model Tutorial. Available on the web at
http://www.adaptiveobjectmodel.com/.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern-Oriented Software Ar-
chitecture: A System of Patterns. John Wiley & Sons.

Devos, M. and Tilman, M. (1998). A repository-based
framework for evolutionary software development
(Argo Belgium School System). UIUC’98 MetaData
Pattern Mining Workshop.

Foote, B. and Yoder, J. W. (1998a). Metadata and Active
Object-Models. Fifth Conference on Patterns Lan-
guages of Programs (PLoP ’98) Monticello, Illinois.

Foote, B. and Yoder, J. W. (1998b). Metadata and Active
Object-Models. Workshop Position Paper; OOPSLA
’98.

Foote, B. and Yoder, J. W. (2001). Adaptive Object-Models.
Smalltalk Solutions 2001 AOM Workshop Presenta-
tion, Rosemont, IL, USA.

Forman, I. R. and Danforth, S. H. (1998). Putting Meta-
classes to Work: A New Dimension in Object-Oriented
Programming. Addison-Wesley.

Fowler, M. (1997). Analysis Pattern: Reusable Object Mod-
els. Addison-Wesley.

Fowler, M. (2002). Patterns of Enterprise Application Ar-
chitecture. OOPSLA 2002.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Johnson, R. (1997). Dynamic Object Model. OOPSLA ’97.

Johnson, R. and Oakes, J. (1998). User-Defined Prod-
uct Framework. UIUC’98 MetaData Pattern Mining
Workshop.

Manolescu, D. and Johnson, R. (1999). Dynamic Object
Model and Adaptive Workflow. OOPSLA’99 Meta-
data and Active Object-Model Pattern Mining Work-
shop, Denver, Colorado.

Martin, R. C., Riehle, D., Buschmann, F., and Vlissides,
J. (1998). Pattern Languages of Program Design, 3.
Addison-Wesley.

Revault, N. and Yoder, J. W. (2001). Adaptive Object-
Models and Metamodeling Techniques. Workshop Re-
sults; ECOOP 2001 Budapest, Hungary.

Riehle, D. (1997). A Role-Based Design Pattern Catalog
of Atomic and Composite Patterns Structured by Pat-
tern Purpose. Ubilab Technical Report 97-1-1. Zurich,
Switzerlang: Union Bank of Switzerland.

Riehle, D. and et al., W. S. (1998). Serializer. Pattern lan-
guages of Program Design 3. Addison-Wesley, Chap-
ter17, pages 293–312.

Riehle, D., Tilman, M., and Johnson, R. (2000). Dynamic
Object Model. PLoP 2000.

Shaffer, C. A. (1997). A Practical Introduction to Data
Structures and Algorithm Analysis. Prentice Hall.

Sun Microsystems Inc. (2003). Core J2EE Pattern.
http://java.sun.com/blueprints/corej2eepatterns/.

Woolf, B. (1994). Understanding and Using
ValueModels. Available on the web at
http://www.ksccary.com/article6.htm.

Yoder, J. W., Balaguer, F., and Johnson, R. (2001a). Adap-
tive Object Models for Implementing Business Rules.
Position Paper for Third Workshop on Best-Practices
for Business Rules Design and Implementation, OOP-
SLA.

Yoder, J. W., Balaguer, F., and Johnson, R. (2001b). Ar-
chitecture and Design of Adaptive Object Models. In-
triguing Technology Presentation at the 2001 Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’01), ACM SIG-
PLAN Notices, ACM Press.

Yoder, J. W. and Johnson, R. (2002). The Adaptive Ob-
ject Model Architectural Style. The Proceeding of The
Working IEEE/IFIP Conference on Software Architec-
ture 2002 (WICSA3 ’02).

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

302


