MONTHLY FLOW ESTIMATION USING ELMAN NEURAL NETWORKS

Luiz Biondi Neto, Pedro Henrique Gouvêa Coelho, Maria Luiza Fernandes Velloso
Electronics and Telecommunications Department, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, Bl. A, Sala 5036, Maracanã, 20550-013, Rio de Janeiro, RJ, Brazil

João Carlos C. B. Soares de Mello
Production Engineering Department, Fluminense Federal University, Rua Passo da Pátria, 156, São Domingos, 24240-240, Niterói, RJ, Brazil

Lidia Angulo Meza
Technology Science Institute
Veiga de Almeida University, Rua Ibituruna 108, Maracanã, 20271-020, Rio de Janeiro, RJ, Brazil

Keywords: Time series estimation, Flow Estimation, Elman Neural Networks

Abstract: This paper investigates the application of partially recurrent artificial neural networks (ANN) in the flow estimation for São Francisco River that feeds the hydroelectric power plant of Sobradinho. An Elman neural network was used suitably arranged to receive samples of the flow time series data available for São Francisco River shifted by one month. For that, the neural network input had a delay loop that included several sets of inputs separated in periods of five years monthly shifted. The considered neural network had three hidden layers. There is a feedback between the output and the input of the first hidden layer that enables the neural network to present temporal capabilities useful in tracking time variations. The data used in the application concern to the measured São Francisco river flow time series from 1931 to 1996, in a total of 65 years from what 60 were used for training and 5 for testing. The obtained results indicate that the Elman neural network is suitable to estimate the river flow for 5 year periods monthly. The average estimation error was less than 0.2 %.

1 INTRODUCTION

The Brazilian hydroelectric system presents peculiar aspects that make it different from other such systems. First, Brazilian rivers flow characteristics show a strong seasonality and a high degree of uncertainty on the opposite of north hemisphere systems in which the hydrologic regimen is ruled basically by ice melting. Second, the Brazilian system shows an isolating system characteristic lacking interconnection with neighbouring thermoelectric systems as opposite to typical hydroelectric systems. And finally it shows a strong hydraulic coupling among its unities.

Thus, the operation planning of such plants depends on a previous knowledge of water volume available in the corresponding reservoirs, i.e. it is necessary to know the volume of water that will be available in advance in order to estimate the maximum level of energy to be generated by the plant. So it is possible to carry out the energy planning having good flow estimates in order to optimize the energy processing generation. To that end, there are measuring units along specific sites on the rivers comprising the hydrographical basin that produce discrete flow measures making possible the composition of history flow series. The estimation of flows...
comprises the determination, in advance, of the values of water volume that will reach the measuring units based on the available history series (Chatfield, 1991).

The flow estimate is a true challenge used for the management of hydrological resources of a certain river basin (Moraes, 1995, 1996). The predictions of flood, sole humidity for agriculture, levels of river navigation, the available water capability for water distribution, irrigation and energy production are possible with river flow estimation (Tucci, 2002). The flow estimation can be performed for short, medium or long term. (Tucci, 2002). The short term prediction is used to estimate the flow in a basin location within some hours or days in advance. The medium term prediction involves the flow prediction within one to several months in advance and depends strongly on weather and ocean conditions that might influence the values of future flows. Finally, the long term prediction deals with the estimation of the risks of certain levels of flows, usually done statistically, in a certain site in the river basin. For instance, the flood risk in a certain river section, the chances of dry and wet periods, etc (Tucci, 2002).

Traditionally the electric sector uses the Box-Jenkins method (Box, 1976), (Hoff, 1983) for predicting the river flow that supposes a linear relationship among the present and past flow values. Linear models usually considered are autoregressive (AR), moving average (MA) and the autoregressive moving average (ARMA) that might not be suitable to deal a data set having non linear and non stationary characteristics such as the flow series (Chatfield, 1991).

On the other hand, artificial neural networks (ANN) (Fog, 1995), (Lachtermacher, 1995), (Sarle, 1995) are models comprising a number of non linear elements, the neurons, working in parallel and organized in layers such as their biological counterparts. They can learn certain knowledge by experience (Haykin, 1994), (Evans, 1991), (Siqueira, 2002). The ANNs can be of two types: feedforward and recurrent networks. The neural networks with no feedback are static i.e. a certain input only produces a set of outputs with no memory capability. Recurrent neural networks are able to memorize temporal information. A typical case is the Elman network (Elman, 1990), which is partial recurrent and will be used in this paper for estimating the river flow.

The main advantages in using the ANN approach compared to the classical methods are:

- ANNs are faster than most current statistical techniques;
- ANNs are self-monitoring, i.e. they learn how to perform accurate predictions;
- ANNs are able to carry out iterative predictions;
- ANNs are able to deal with non stationarity and non linearity of the investigated time series;
- ANNs offer both parametric and non parametric prediction;

Several researchers have done work in this area. Zurada in 1997 (Zurada, 1997) introduced the concept of sequential neural networks using an Elman network. Aquino (Aquino, 1999) uses ANNs in the planning for hydrothermal generated systems operation. Millioni (Millioni, 2000) tries to circumvent the physical nature process using a system that makes use, in a first step, of econometric models dealing with multiple regressions to explain the flow of a river section from the observation of the backward river level. Tucci (Tucci, 2001) shows the real time prediction result for the river volume at Ernestina reservoir.

This work has the objective to investigate the estimation of the river flow in a 5 year period monthly in order to aid the electrical sector involved in energetic planning.

The importance of the flow prediction can be better appreciated by the fact of the existence of an energy surplus not used, coming from the difference between the average generation in all flow history (medium and long term) and the firm energy.

The paper is organized in 5 sections. The first introduces the subject reviewing other works done earlier.

Section 2 shows theoretical foundations on Elman neural networks. Section 3 describes the problem modelling. Section 4 show numerical results and section 5 concludes the paper.

2 BASIC FOUNDATIONS

Static neural networks such as multiple layer perceptrons (MLP) trained with the backpropagation algorithm (Cichocki, 1996), are not suitable for dynamic mappings (Haykin, 1994).

As a consequence learning the temporal characteristics of a signal containing the history river flow can be a difficult task.

In order to solve the problem, a traditional MLP could be used with inputs delayed in time. Figure 1
shows that arrangement called temporal network in which a MLP network is fed by an input \(u(t) \) that is successively delayed in time until \(u(t-k) \) and has as output \(y(t) = u(t) \). In that case, the delay operator is being applied only at the input but it could be applied either in the hidden layers or at the output.

Another way to solve the problem is to use networks with feedback called recurrent neural networks. Usually recurrent neural networks can incorporate a MLP or part of it. In general such networks are suitable for dealing problems with temporal characteristics.

Recurrent neural networks can have one or more feedback loops. Those fully recurrent every neuron is connected to all others and constitute the more general case of ANNs.

An elegant way to represent a neural network is using a state space model. The notion of state plays an important role in the mathematical formulation of a dynamical system. The state of a system is formally defined as the set of quantities that synthesises all the information about the past behaviour of the system that is needed to uniquely describe its future behaviour, except for the purely external effects arising from the applied input or excitation. Let the \([q \times 1]\) vector \(x(k) \) be the state of a discrete non linear system. Let the \([m \times 1]\) vector \(u(k) \) be the applied input to the system and the \([p \times 1]\) vector \(y(k) \) its output. In mathematical terms, the dynamic behaviour of the system, assumed to be noise free, is described by the following pair of non linear equations.

\[
\begin{align*}
x(k+1) &= \varphi(W_a x(k) + W_b u(k)) \\
y(k) &= C x(k)
\end{align*}
\] (1)

where \(W_a \) is a \([q \times q]\) matrix, \(W_b \) is a \([q \times m]\) matrix, \(C \) is a \([p \times q]\) matrix , and \(\varphi : \mathbb{R}^q \rightarrow \mathbb{R}^q \) is a map described by:

\[
\varphi : \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_q \end{bmatrix} \rightarrow \begin{bmatrix} \varphi(x_1) \\ \varphi(x_2) \\ \vdots \\ \varphi(x_q) \end{bmatrix}
\] (3)

for some memoryless component-wise nonlinearity \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \). The spaces \(\mathbb{R}^m \), \(\mathbb{R}^q \), and \(\mathbb{R}^p \) are named the input space, state space and output space respectively. It can be said that \(q \), that represents the dimensionality of the state space is the order of the system.

The recurrent neural network represented by equations (1) and (2) is a dynamic system with \(m \) inputs and \(p \) outputs of order \(q \). Equation (1) is the process equation and equation (2) the measurement equation. Regarding matrices \(W_a \), \(W_b \) and \(C \), and the non linear function \(\varphi(.) \) the following can be said.

\(W_a \) contains the synaptic weights of the \(q \) processing neurons which are connected to the feedback nodes in the input layer. \(W_b \) contains the synaptic weights for each one of the \(q \) neurons that are connected to the input neurons, and \(C \) defines the combination of neurons that will characterize the neural network output. The nonlinear function \(\varphi(.) \) characterizes the activation function of any neuron in the neural network. This function is usually defined by the hyperbolic tangent (4).

\[
\varphi(x) = \tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}
\] (4)

An important property of a recurrent neural network described by state space equations (1) and (2) is its capability to approximate a wide class of non linear dynamic systems.

Figure 2 shows a recurrent neural network with three inputs, three states and one output, i.e. \(m=3 \), \(q=3 \) and \(p=1 \).
Matrices W_a and W_b are defined by:

$$W_a = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$ \hspace{1cm} (5)$$

$$W_b = \begin{bmatrix} w_{14} & w_{15} & w_{16} \\ w_{24} & w_{25} & w_{26} \\ w_{34} & w_{35} & w_{36} \end{bmatrix}$$ \hspace{1cm} (6)$$

Matrix C a line vector defined as:

$$C = [1 \hspace{0.5cm} 0 \hspace{0.5cm} 0]$$ \hspace{1cm} (7)$$

Figure 3 represents a nonlinear autoregressive model with exogenous inputs (Haykin, 1994). The model has a delay line memory with k unities in the input. A unit delay output is also feedback to the input. The output will be one time unit advanced relatively to the input.

The current and past input values are denoted by: $u(t)$, $u(t-1)$, $u(t-2)$... $u(t-k+1)$ and the corresponding output values: $y(t)$, $y(t-1)$, $y(t-2)$... $y(t-k+1)$ over what a regression is performed modeled by the nonlinear map \mathcal{I} as shown in equation (8).

$$y(t+1) = \mathcal{I}(y(t), \ldots, y(t-k+1), u(t), \ldots u(t-k+1))$$ \hspace{1cm} (8)$$
3 MODELLING

In this paper, a model similar to the one shown in figure 4, is used for 60 month periods delayed one another by one month.

The available database covers 65 years of the São Francisco river flow, month by month. From those data, 60 year data is used for the network training, leaving for test the remaining 5 year data. The training data are arranged in an input matrix containing 661 rows, delayed by one month and 60 columns concerning to a 5 year period. The target vector has 60 elements delayed by one month relative to the last row of the input matrix.

Figure 5 shows the network model used in the tests.

The optimum number of neurons in the hidden layers is chosen heuristically according to training results for optimizing the neural network performance particularly regarding generalization.

The output layer has only one neuron that will produce a vector with 60 elements representing the predicted river flow values for five years monthly. The backpropagation algorithm was used for training the neural network in order to adjust its feedforward weights. The recurrent weights are fixed to one as usually done in Elman neural networks.

4 RESULTS

Several Elman ANNs were tested in order to obtain the best generalization characteristics. The best architecture resulted in an Elman neural networks with three hidden layers (357-186-51) and one output layer with one neuron which uses the hyperbolic tangent as its activation function. The used criterion for error minimization was the gradient descent with adaptive learning rate and a momentum coefficient to minimize the fluctuations in the learning curve. Convergence was achieved after 1118 epochs for an error goal of 10^{-5} and the resulting learning curve is shown in figure 6.

The weights achieved by training the Elman ANN are stored in a file for later use for the monthly river flow prediction for a five year period. Figure 7 shows the original test data comprising the last five year flow data reserved for test, (continuous curve) and the prediction curve (dotted line curve) obtained by the Elman ANN. The resulting prediction average error was less than 0.2% .
Figure 8 shows the prediction error curve where it can be seen that the average error is not greater than 0.2 %.

5 CONCLUSIONS

The results achieved by the use of the proposed Elman ANNs for river flow prediction indicate that they are quite adequate for the flow estimation task.

In the investigated application, the average prediction error of about 0.2% is much less than that obtained by traditional ANNs using data Windows (Haykin, 1999) typically in the order of 5%. Statistical methods used for flow prediction such as Box & Jenkins and its variations (Box and Jenkins, 1976) yield an average error larger than 10 %.

For future work, suggestions include the use of fully recurrent ANNs and ocean temperature data added to the neural network input. Ocean temperature is known to have a significant influence on the river flow values so that sort of information will be certainly useful for the neural network in consideration.

REFERENCES

Siqueira, T. G., Soares Filho, Secundino, 2002. Application of Neural Networks with Radial Basis Activation Function to the prediction of Non-stationary Time Series, In XIV Congresso Brasileiro de Automação. (in Portuguese)

