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Abstract. In this paper, a framework of a unified neural and neuro-fuzzy ap-
proach to integrate implicit and explicit knowledge in hybrid intelligent sys-
tems is presented. In the developed hybrid system, training data used for neural 
and neuro-fuzzy models represents implicit domain knowledge. On the other 
hand, the explicit domain knowledge is represented by fuzzy rules, directly 
mapped into equivalent connectionist structures. A formal model for a hybrid 
intelligent system implemented as neural, neuro-fuzzy and fuzzy modules is 
proposed. Furthermore, this paper explores the influences of the main identified 
parameters of the proposed model on the accuracy of the hybrid intelligent sys-
tem in a predictive data mining application. 

1   Introduction 

In recent years, hybrid intelligent systems (HIS) have drawn an increasing research 
interest. This approach has been successfully applied in various areas, such as speech 
and natural language understanding [1], [2], robotics [2], medical diagnosis [3], fault 
diagnosis of industrial equipment [2], financial applications [4], bioinformatics [5], 
predictive toxicology [6]. A particular attention is paid to HIS incorporating connec-
tionist structures, known as hybrid neural systems [2]. However, there is still a need 
to homogeneously describe the modular structures of such knowledge-based systems 
in order to propose further approaches for development of suitable solutions. 

One of the delicate problems encountered to develop a good hybrid neural model 
for a real-world data-driven application is parameter tuning. One of the main con-
straints is determined by insufficiency of amount, distribution and quality of existing 
data, such that the model cannot meet the expectations at a particular development 
stage. Many different methods exist for adapting HIS from data, for instance Adap-
tive Network-based Fuzzy Inference Systems (ANFIS), nonlinear global search tech-
niques (e.g. genetic algorithms) or adaptive on-line incremental or hybrid (supervised 
and unsupervised) learning algorithms [1]. The drawbacks of such methods are their 
relative dependency on the data quality and further inconsistent and unpredicted 
global performance. Moreover, the development of a good quality system in the case 
of a modular combination of individual models comes with increased difficulty tasks. 

An original HIS approach based on implicit and explicit knowledge representation 
has been found suitable to develop better models, surpassing some of the above listed 
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disadvantages. Some of its applications in Predictive Data Mining are discussed in 
[6]. Its modular architecture comes with the advantage of incorporating training data 
as connectionist structures and human expertise in form of fuzzy rules. The approach 
demonstrates better robustness because of the modular combinations [5] of various 
incorporated expert opinions. However, one of the encountered challenges is the 
significance of its parameters to the quality of the global model. 

The next sections will be focused on the formalism proposed to describe the pa-
rameterized structure of HIS and the synergy derived from the use of its complemen-
tary components (Section 2). A formal description of HIS is proposed in Section 3, 
together with considerations on the universe of discourse and some issues on integra-
tion algorithms for the development of the global structure. Some implications and 
significance of parameters to the system will be further illustrated through a case 
study. The application, described in Section 4, covers the use of structural, learning 
and descriptive parameters of various knowledge models to tune an integrated system. 
A particular case study from predictive toxicology is presented, along with some 
preliminary experimental results on the influence of the main parameters of the pro-
posed intelligent system based on the modular integration of implicit and explicit 
knowledge modules. In the last section, the advantages of using modular HIS to de-
velop knowledge fusion models and list some potential further research directions are 
summarized. 

2   Knowledge Representation 

The last ten years have produced a tremendous amount of research on fuzzy logic and 
connectionist fields. The current directions of research explore high-level connection-
ism and hybrid intelligent systems [2], [7]. The two approaches can be used in a com-
plementary way, HIS combining connectionist and symbolic features. In such sys-
tems, the learner can insert fuzzy rules into neural networks. Once the domain knowl-
edge has a neural representation, training examples are used to refine initial knowl-
edge or additional structures. Finally, it processes the output for given instances and, 
using specific methods [8]-[10], can extract symbolic information from trained net-
works, to explain and interpret the refined connectionist knowledge. 

The implicit knowledge is defined as connectionist representation of learning data. 
An explicit knowledge module has the role to adjust performances of implicit knowl-
edge modules by using external information provided by experts, in form of Fuzzy 
Rule-based Systems. In our approach, connectionist integration of explicit and im-
plicit knowledge appears a natural solution to develop homogeneous intelligent sys-
tems. Explicit and implicit rules are represented using MLP (Multi-Layer Perceptron) 
[11], neuro-fuzzy [12], fuzzy (FNN) or hybrid (HNN) neural nets [13]. Thus, fuzzy 
logic provides the inference mechanism under cognitive uncertainty, since neural nets 
offer advantages of learning, adaptation, fault-tolerance, parallelism and generaliza-
tion. 

The hybrid intelligent system considered in this paper is a multi-input single-
output (MISO) neuro-fuzzy system (Fig. 1). The general goal is to model a combina-
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tion of data and expert information to relate some inputs with the corresponding out-
put value: 

Φ : D ⊆ Rn → R, (1) 

where n ∈ N is the number of the inputs from the universe of discourse U over the 
application domain. This leads to the following steps in a fuzzy neural computational 
process: (1) development of individual knowledge-based connectionist models, (2) 
modeling synaptic connections of individual models, which incorporate fuzziness into 
modules, and (3) adjusting the ensemble voting algorithm (Fig. 1). 

The fundamental concepts and methods used in our approach [6][14][15] are based 
on the neuronal fuzzy model MAPI [7]. The MAPI neuron is used to implement the 
fuzzy neuro-symbolic processing units. 

 

Fig. 1. The hierarchical architecture of the integrated intelligent system, based on modular 
combination of implicit and explicit knowledge modules. 

2.1   The Neuronal Model 

The artificial neuron MAPI (Matching, Aggregation, Projection, Inverse-matching 
neuron), proposed by Rocha [7] combines connectionist and fuzzy reasoning: 

MAPI={{Xp}, Y, T, R, C, Q, {a,f}}, where (2) 

• {Xp} is the family of pre-synaptic inputs over MAPI by all its n pre-synaptic ax-
ons; 

• Y is the output code of MAPI; 
• T is the family of transmitters used to exchange messages with other neurons; 
• R is the family of receptors released by the pre-synaptic neurons; 
• Q is the function used to aggregate the actual pre-synaptic activity; 
• {a,f} is a family of thresholds and encoding functions defined as: 
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• C is the set of controllers; each ci actions over MAPI itself and other neurons. 
The formal neuron exhibits capabilities of a multipurpose processing device, since 

it is able to handle different types of numerical calculations. This includes the proc-
essing capability of the classic neuron introduced by McCulloch and Pitts in 1943. 

2.2   Explicit Knowledge Representation 

According to the methodology presented in [13], Fuzzy Rule-Based Systems can be 
mapped into equivalent ANNs. We define the explicit knowledge as a knowledge base 
represented by neural networks, computationally identical to a given fuzzy rules set, 
and created by mapping a priori known fuzzy rules. The fuzzy rule set is described as 
a discrete fuzzy rule-based system (DFRBS [13]). Both, Mamdani and Sugeno zero 
and first order Fuzzy Inference Systems can be represented [7], [13] as EKMs. The 
intrinsic representation of explicit knowledge is based on MAPI fuzzy neurons [7]. 
Numerical weights corresponding to connections between neurons are computed 
using either Combine Rules First Method [7], [13] or Fire Each Rule Method [13]. 

The neural reasoning engine is accorded to multiple premises fuzzy rules using 
fuzzy connectives. Considering the extended version of Modus Ponens [16]: 

IF X1 is A1 ^ ... ^ Xp is Ap then Y is B 
(X1 is A'1) ^ ... ^ (Xn is A'n) 

Y is B' 

(4) 

where system inputs Xi, i=1,2,...,n, and output Y are linguistic variables. Thus, for 
example, let be considered a single rule with two antecedents: 

IF X1 is A1 AND X2 is A2 THEN Y is B (5) 

where A1, A2, B are fuzzy sets having associated matching functions µA1, µA2, µB.  
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(a) (b) 

Fig. 2. Connectionist Discrete Fuzzy Rule-based System: (a) discrete fuzzy set; (b) MAPI 
ANN equivalent with a rule with two premises (Combine Rules First Method) 

Let the membership function µA1(ξ) be described by a vector X1 of size m1, so that: 

x1i=µA1(ξ), if αi<ξ≤αi+1, i=1,2,..., m1-1 (6) 

Introducing the discrete form (Fig. 2a) of fuzzy set A1=[x11 … x1m1] in relation (5): 

R:A1× A2×B→[0,1], µR(x1,x2,y)=(µA1(ξ)^µA2(ψ))ΓµB(υ) (7) 

defines the discrete form of a fuzzy implication according to (4), where ^ and Γ are 
fuzzy connectives and implication operators. An equivalent structure using MAPI 
neurons to implement an explicit multi-premise rule [2] is shown in Fig. 2b. 

2.3   Implicit Knowledge Representation 

The implicit knowledge represents data collections acquired by learning procedures in 
connectionist structures. IKM structures have two representations: Multilayer Percep-
trons as Crisp Neural Networks (IKM_CNN) or neuro-fuzzy nets (IKM_FNN) [14]. 

53



 

Fig. 3. Implicit Knowledge Module based on neural fuzzy processing IKM_FNN. 

An IKM_CNN is a Multi-Layer Perceptron [11] whose typical equation for the 
weight changes by various learning algorithms is described by: 

1)( −∆+∇−=∆ ppp WWEW αη  (8) 

in which ∆Wp represents the updates to the weight vector, E(Wp) is the error func-
tion at the p-th iteration, η is the learning rate and α is the momentum term. The 
learning rate determines the speed the network moves along the error surface follow-
ing its gradient. The momentum term smoothes out fluctuations in the error-weight 
space. 

An IKM_FNN is a multi-layered neural structure based on an input layer to per-
form membership degrees of the current values, a fully connected three-layered MLP 
and a defuzzification layer (Fig. 3). MAPI input nodes implement membership func-
tions for each linguistic input. The objective is to learn fuzzy associations between 
inputs and output: IKM_FNNs implement models dependent on learning and struc-
tural parameters, and on fuzzification algorithm (according to equations 7 and 8). 

3   Implicit and Explicit Knowledge-based Intelligent System 

Let’s consider a MISO HIS with n inputs. Let also be considered ∏
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universe of discourse over the application domain as the Cartesian product of sets Di, 

i=1..n+1, having the input variables ii DX ∈ , i=1..n, and the output 1+∈ nDY . 

54



A HIS as an integrated model of the problem Φ based on implicit and explicit 
knowledge modules is a good approximation of Φ as defined by: 
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The modules Mj are, in our approach, either implicit or explicit knowledge models  

{ }SugenoEKMMamdaniEKMFNNIKMCNNIKMj MMMMM ____ ,,,∈ . For any of these 

models, based on the connectionist homogeneous implementation of any Mj model, 
we can propose, following (3), (7) and (8), a formal parameter-based description of 
HIS: 

ΩΛΘ= ,,jM  (10) 

where Θ is the set of topological parameters (i.e. number of layers, number of 
neurons on each layer, connection matrices) of individual models and also of general 
structure (type and number of individual models and gating networks), Λ is the set of 
learning parameters (learning rate, momentum term, any early stopping attribute for 
implicit knowledge modules, but NIL for explicit knowledge modules) and Ω is the 
set of description parameters (defining for any fuzzy model number and type of 
fuzzy sets, and parameters of membership functions associated to linguistic vari-
ables). 

Three distinctive cases to develop further integrated models can be identified: 
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 for all j=1..m. The model is a modular architecture [2], [15] 

combining experts on the whole input domain. 
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integrated decomposition model, by dividing the initial problem in separate less-
complex sub-problems. 
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≠∏ . The models are built on overlapping sub-domains and fur-

ther algorithms to refine the problem as cases 1 or 2 are required [14], [15]. 
So far, few different strategies to combine IKM and EKM in a global HIS have 

been proposed [15]: Fire Each Module (FEM), Unsupervised-trained Gating Network 
(UGN), Supervised-trained Gating Network (SGN), majority voting etc. FEM is an 
adapted Fire Each Rule method [13] for modular networks, in two versions: statistical 
combination of crisp outputs (FEMS) or fuzzy inference of linguistic outputs 
(FEMF). The second strategy proposes competitive aggregation of EKMs and IKMs, 
while the SGN uses a supervised trained layer to process the overall output of mod-
ules. 
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4   The Influence of HIS Parameters: a Case Study 

The case study considers the influence of HIS parameters to satisfy conditions for 
Case 1 (see Section 3). According to formulas (3), (8), (9), the influence of momen-
tum term to IKM_CNN, IKM_FNN (trained with gradient descent adaptive learning 
rate backpropagation), the influence of membership functions to IKM_FNN and 
EKM_Sugeno and also the influence of learning and description parameters to the 
global models, developed using FEMS, FEMF, SGN integration algorithms, are con-
sidered. The main objective of this case study is to define the main parameters of the 
HIS model and to describe their importance in terms of prediction accuracy. 

The case study is based on Predictive Toxicology data: the 2D ciliate (Tetrahy-
mena pyriformis) population growth impairment (IGC50) values from TETRATOX 
database [17]. For the sake of simplicity, just two input chemical descriptors were 
finally chosen. The whole set of available patterns has been divided in two independ-
ent sets, for training and testing (70/30). For the accuracy measure, the absolute error 
of the predicted cases for the whole data set is used. The system consists on implicit 
knowledge modules (IKM_CNN, IKM_FNN) and explicit knowledge modules 
(EKM_Sugeno implementing a Quantitative SAR [6]). 

 

 
(a) number of hidden neurons (b) momentum term 

Fig. 4. Tuning IKM_CNN: (a) topological parameters; (b) learning parameters. 

IKM_CNNs were generated for various values of topological parameters (number of 
hidden neurons of the connectionist structure, Fig. 4a) and learning parameter (mo-
mentum term, Fig. 4b) and the best expert has been chosen IKM_CNN with 8 hidden 
neurons and momentum term of 0.85. 

A further study on parameters description related to linguistic variables considered 
membership functions generated by ANFIS (Fig. 5a). Two approaches to fuzzify the 
variables were considered: Gaussian Bell membership functions for a Sugeno order 1 
fuzzy system (Fig. 5b), and a balanced fuzzy split of domain intervals. For various 
combinations of membership functions (triangular, trapezoidal, Gaussian, Bell) the 
best results were of ANFIS generated Gaussian Bell 3-3-5 fuzzification procedure. 

The global system, based on the best generated individual experts and one explicit 
QSAR [17], has been applied to the test data. Comparative results are depicted in Fig. 
6. The results show that a tuned HIS model comes with better predictive abilities than 
traditional approaches (QSAR). The identified parameters, following the formal de-
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scription (10) of the proposed HIS have a critical impact on the coverage and accu-
racy of the developed modular expert models. Following the results, any training 
algorithm proposes satisfactory performances as individual models, but modular 
combinations based on further parameters tuning will definitively increase the global 
predictions accuracy. However, the case study is based on a stepwise approach of 
parameters tuning, where the final models were built on already improved individual 
experts. 

 
(a) number and shape of linguistic values (b) ANFIS fuzzy rules analysis 

Fig. 5. Tuning description parameters for IKM_FNN and EKM. 

Fig. 6. Performances of best generated experts and global algorithms for HIS development. 

5   Conclusions and Future Work 

This paper briefly explains how different modular combinations of connectionist and 
fuzzy inference systems could be formulated using a parameter-based data driven 
functional approach and then investigates whether they can provide an improved level 
of performance, sufficiently good and robust to provide reliable models for predictive 
data mining. Experiment results reveal that all considered tuned parameters and com-
bining paradigms can alter the developed hybrid models to show better performances 
to represent predictive toxicology data accurately. 
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The main problem regarding HIS development is the difficulty of delivering an op-
timized structure, due to existence of limitations in knowledge elicitation. Implicit 
and explicit knowledge models were analyzed in order to propose a formal descrip-
tion of HIS based on neural, neuro-fuzzy and fuzzy modules. The proposed model 
exhibits effective solutions for evaluation of available systems against representative 
samples, to choose the best combination of the available methods. The advantages of 
developing HIS models to combine implicit and explicit knowledge structures are 
identified. The implications and significance of individual and collective parameters 
tuning to the global system have been illustrated through a case study from predictive 
toxicology. Classes of individual parameters and their importance were also re-
viewed. 

Comparison of various models developed on the predictive toxicology data sug-
gests that, rather than using just randomly chosen connectionist though trained mod-
els, the use of modular combinations of tuned fuzzy experts significantly improves 
the performance of the hybrid system. However, the data quality and preprocessing 
training data is also quite important for the success of the tuned hybrid intelligent 
systems. 

A reliable algorithm to optimally tune these parameters into the framework of the 
global method of combining the modules in HIS is critical to the quality of further 
predictions and the maintainability of the systems. Future work will be carried out to 
analyze new possibilities of parameters tuning for different expert domain models, 
mainly to consider the disjunctive experts collaboration in hybrid intelligent system 
area. 
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