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Abstract: Studies on the precise control applications with pneumatic systems have been growing in recent years.In 
addition to this, due to the complexity and non-linearity of the system the expected performance will only 
be gained by applying modern control strategies. So the subject of this paper is identification and real-time 
model predictive control of a pneumatic system. In order to realise system identification, a white noise 
signal is sent to the plant and the displacement outputs are stored. Afterwards these data are digitally 
processed and the parametric single-input single-output step response model is obtained. In the previous 
study on this system with a PD controller, a steady-state error is observed. In order to eradicate this, a 
Model Predictive Control – Dynamic Matrix Control algorithm is applied. To run this, in real-time, a 
programme is written in Matlab - Simulink and by using the code generated by Matlab - Real-Time 
Workshop, the real-time position control of the system is performed.

1 INTRODUCTION

Pneumatics technology is preferred in industry 
because it has relatively lightweight and cheap 
components. Pneumatic actuators are extensively 
used in position control applications with open-loop 
control mode where the strokes of the moving parts 
are fixed by the mechanical stops. A closed-loop 
control system is generally not common due to the 
problems arising from air compressibility, poor 
damping ability, mechanical frictions, nonlinearities 
etc. Because of these regulations studies on the 
precise control applications with pneumatic systems 
employing advanced control techniques of sliding 
mode control, variable structure control, PWM 
control, adaptive tracking control etc. instead of 
conventional PID have been increased in recent 
years. In this paper we present a scheme to use one 
of the most popular control strategies, model 
predictive control, in order to control the system 
precisely. 

 

 

2 PNEUMATIC SYSTEM 
MATHEMATICAL MODEL 

Pneumatics system mathematical model consists of 
two parts: The first part is piston dynamics defining 
motion of the piston, carriage and payload masses, 
the second is thermodynamical pressure dynamics 
defining pressure variations in the chambers 
according to piston motion and air mass flow rate, 
which depends on valve dynamics [1, 2]. 

2.1 Piston Dynamics 

The dynamics of piston motion is described by: 
 

1 2( )d fM x B x F A P P+ + = −&& &  (1) 
 

where M is the total moving mass, x is the 
position of the piston, B is the viscous-friction 
coefficient, d f  is the dry friction forces (static or 
dynamic according to piston velocity), A is the 
piston cross-sectional area of the rodless cylinder 
and 1 2  are the chamber air pressures, as shown 
on Figure 1. 
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Where d fF
A

 is the pressure equivalent of the dry 

friction force [7]. 
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Figure 1: Schematic diagram of pneumatic system. 

 
Where v  and x= &
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2.2 Pressure Dynamics 

The dynamics of pressures  and  can be 
expressed as [3]: 
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Where S1 and S2 are the valve cross-sectional 
areas, γ is the ratio of specific heats, L is the stroke 
of the piston ( 1  and 2 are shown in Figure 1), 

1o

L L
x  and 2ox  are the position increments for dead 
volumes of the chambers,  and  are nonlinear 
functions of the form 
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Here R is the universal gas constant, T1 and T2 
are the temperatures of the air inside the chambers, 
and are assumed to be constant, u i  and d i are 
upstream and downstream pressures respectively (i = 
1, 2). And, 
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u i  and d i  are assumed to take the values in 
Table I according to operation of the valves. 

P P

The input signals applied to the valves control 
the chamber reference pressures instead of orifice 
areas as the valves are of servo operation through 
pressure feedback. 

 

( )i i i ref iS k P P= −            (9) ( 1,2)i =
 

Where i r  is the reference pressure for the i-th 
chamber and is the coefficient for i-th valve. 

efP
ik

TABLE I 
  AND  VALUES u iP d iP

Valve no 
(i) 

Valve operation uiP  d iP  

Connected to supply sup plyP 10.9 P  
1 Open to the atmosphere 1P  0.9 a t mP

 
Connected to supply sup plyP 20.9 P

2 Open to the atmosphere 2P  0.9 a t mP
 

 
The relationship between the input voltage and 
output reference pressure is described by 

 

i r e f i i i i o iP a b u u a= + >       (10a) ( 1,2)i =
 

0i r e f a t m i oiP P u a= ≤ ≤       ( 1  (10b) ,2)i =
 

Where i , i  and o ia  are constant values,  is 
the input voltage for i-th valve. 

a b iu

REAL-TIME POSITION CONTROL OF A PNEUMATIC SYSTEM USING MODEL PREDICTIVE CONTROL

109



3 MODEL PREDICTIVE 
CONTROL 

Model Predictive Control refers to a class of 
algorithms that compute a sequence of manuplated 
variable adjustments in order to optimize the future 
behaviour of a plant. So the term Model Predictive 
Control does not designate a specific control 
strategy but a very ample range of control methods 
which make an explicit use of a model of the process 
to obtain the control signal by minimizing an 
objective function. In this study we used one of 
these methods named Dynamic Matrix Control (also 
called “Cutler’s Method”). The process model 
employed in this formulation is the step response of 
the plant, while the distrubance is considered to 
obtain constant along the horizon. The procedure to 
obtain the predictions is as follows: 

As a step response model is employed: 
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1
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the predicted values along the horizon will be: 
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Disturbances are considered to be constant, that 

is  ň(t + k │ t) = ň(t │ t) =  ym(t) – ŷ(t│ t). Then it 
can be written that: 
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where f(t + k) is the free response of the system, that 
is, the part of the response that does not depend on 
the future control actions and given by: 

f(t + k) = ym(t) + (14) )()(
1
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As only a finite number of terms (N) are 
considered, the process is assumed to be stable and 

casual and therefore the free response is computed 
as: 

f(t + k) = ym(t) + (15) )()(
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If this equation is expressed in matrix form: 
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The prediction horizon p for the DMC algorithm 
is taken into account. The DMC technique allows 
for m consecutive changes in the input variable (m ≤ 
N), m being called the control horizon. In this way 
the changes in the model output over the prediction 
horizon due to consecutive changes in the input 
variable over the control horizon, can be expressed 
as: 

ŷ(t + 1 │ t) = g1∆u(t) + f(t + 1) 
ŷ(t + 2 │ t) = g2∆u(t) + g1∆u(t + 1) + f(t + 2) 
         . 
         . 
         . 
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Defining the system’s dynamic matrix G as: 
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The prediction can be computed by the general 

known expression: 
 

ŷ = Gu + f  (19) 
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The objective of a DMC controller is to drive the 
output as close to the setpoint as possible in a least 
squares sense with the possibility of the inclusion of 
a penalty term on the input moves.Therefore, the 
manipulated variables are selected to minimize a 
quadratic objective that can consider the 
minimization of the future errors and the control 
effort, in which case it presents the generic form; 

 

J = [ŷ(t + j │ t) – w(t + j)]∑
=

p

j 1

2+∑ λ[∆u(t + j – 1)]
=

m

j 1
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If there are no constraints, the solution to the 
minimization of the cost function J = eeT + λuuT  , 
where e is the vector of future errors along the 
prediction horizon and u is the vector composed of 
the future control increments ∆u(t) , ... , ∆u(t + m), 
can be obtained analytically by computing the 
derivative of J and making it equal to 0, which 
provides the general result: 

 
u = (GTG + λI)-1GT(w – f) (21) 
 
As in all predictive strategies, only the first 

element of vector u is really sent to the plant. It is 
not advisable to implement the entire sequence over 
the next m intervals.This is because is impossible to 
perfectly estimate the disturbance vector and 
therefore it is also impossible to anticipate precisely 
the unavoidable disturbances that cause the actual 
output differ from the predictions that are used to 
compute the sequence of control 
actions.Furthermore, the setpoint can also change 
over the next m intervals.  

4 SYSTEM IDENTIFICATION 

In section 3, it was mentioned that DMC algorithm 
uses a single-input single-output step response 
model, to calculate the control signals. In order to 
obtain these model coefficients, a system 
identification process has been realized by using 
Matlab - System Identification Toolbox. 

The Simulink model, which was developed for 
data acquisition is shown in Figure 2. 

 

 
 

Figure 2: The Simulink Model for System 
Identification. 

 
The SISO Step response Model is obtained by 
sending a white noise signal to the plant. The white 
noise signal and the response of the plant is given in 
Figure 3. 

 

 
Figure 3: Input and Output Signals. 

 
In Figure 3, u1 is the white noise signal and y1 is the 
osition signal of the plant. p 

After the system identification process, the 
validation is carried out and the validation results 
indicate a 3rd order system model. The measured and 
computed values are given in Figure 4 and the unit 
step response of this 3rd model is given in Figure 5. 
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Figure 4: The Validation Results. 

 

 
Figure 5: Unit Step Response of 3rd Order SISO 

Model. 

5 REAL - TIME POSITION 
CONTROL 

The feedback gain matrix was built by the step 
response coefficients which were calculated offline 
and shown in Figure 5. Afterwards the algorithm 
applied to the system and twelve real-time position 
control trials were realised. The reference trajectory 
for these trials is chosen as in Figure 6. 

 
Figure 6: Reference Trajectory. 

For real-time control purposes, Matlab - Simulink - 
Real-Time Workshop Toolbox is used. A Simulink 
model containing the dynamic matrix control 
algorithm and signal conditioners are prepared. The 
main block is shown in Figure 6. 

 

 
Figure 6: The Main Simulink Block 

 
In these twelve real-time experiments, controller 
parameters, such as prediction horizon and control 
horizon, and also the coefficient lambda were 
changed. The optimal response is illustrated in 
Figure 7. Figure 8 shows the worst among these 
experiments. 

 

 
Figure 7: Optimal Response 

(Prediction Horizon: 20, Control Horizon: 20, 
Lambda:80) 

 

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

112



 
Figure 8: The Worst Response 

(Prediction Horizon: 20, Control Horizon: 10, 
Lambda:20) 

 
It is observed that in some positions the system 
response goes away from the reference and again    
starts to follow. This can be explained related to the 
high dry friction values in those regions. In the mean 
time steady-state errors are eliminated by this 
control algorithm as seen in Figure 7. 

6 EXPERIMENTAL 
INSTALLATION 

The system consists of a magnetically coupled 
rodless pneumatic cylinder with high precision 
guide (SMC CY1HT32, stroke 0.5 m, diameter 
0.032 m), two three-way electropneumatic 
servovalves (SMC VEP 3121), a magnetic linear 
scale (SONY Magnescale SR10-060A, a computer 
having a 1.6 GHz microprocessor, 256 MB RAM 
and a data acquisition card (Advantech PCL-
812PG). Matlab - Simulink data acquisition software 
is used under Windows 98 operating system.  

7 CONCLUSION 

In this paper we considered a system identification 
and a real-time DMC position control on o 
pneumatic system. We observed a steady-state error 
from the previous studies on the same test bench 
with PD controller. In order to eradicate this error 
we used Model Predictive Control algorithm. 

In Matlab software, it can be seen that there is a 
MPC Toolbox which cannot be used in real-time 
applications. So we prepared a new real-time usable 
Simulink algorithm for unconstrained SISO systems. 

The step response coefficients, which are 
necessary for the DMC algorithm, were calculated 
off-line in this study. It can be said that a self-tuning 
DMC application will increase the system’s 
performance and will efface the need of an operator.     
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