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Abstract: We present an improved parameter decoupling algorithm in estimating parameters that characterize the 
numerator and denominator of transfer function polynomials using the Adaptive Weighted Least Squares 
arising (AWLS) and Weighted Least Squares (WLS) from Fourier moment functionals of the Shinbrot type. 
This algorithm gives more accurate estimates and uses less computation than Pearson’s algorithm. Also, 
simulation example shows that this algorithm can be applied for the frequency analysis of lightly damped 
systems for which establishing steady state or stationary operation may require unreasonably long settling 
times. 

1 INTRODUCTION 

A decoupling algorithm for optimal identification of 
rational transfer function parameters of discrete-time 
linear systems by least-squares (LS) fitting of 
observed input/output (I/O) data sequences (Shaw, 
1994) was provided. The numerator was estimated 
by minimizing the optimization criterion, and using 
the estimated numerator, the optimal denominator 
was estimated by linear LS in one step. A decoupled 
parameter estimation (DPE) algorithm for estimating 
sinusoidal parameters from both 1-D and 2-D data 
sequences corrupted by autoregressive (AR) noise 
was presented (Li and Stoica, 1996). In the first step 
of the DPE algorithm, a nonlinear LS criterion was 
minimized by a relaxation algorithm to obtain the 
sinusoidal parameters. These estimates were used in 
the second step of the DPE algorithm, which 
estimates the AR noise parameters by a linear LS 
approach. A parameter decoupling method for 
transfer function during quasi-harmonic operation 
was proposed (Pearson, 1998) without any 
simulation example. This presupposes a non-steady 
state mode of operation over a single or integral 
number of periods during which a sinusoidal input is 
used as a probing signal. This deliberate use of a 
sinusoid during an otherwise transient state of 
system operation is motivated by the desire to 

simplify the identification process via a parameter 
decoupling that occurs in a particular frequency 
domain model. We explored Pearson’s algorithm 
with several simulation examples and improved its 
estimation performance by a more accurate and 
more effective method. 

 In contrast to (Pearson, 1998), the use of a high 
frequency sinusoid is proposed in the modified 
alpha-stage to decouple the denominator parameters 
(herein called alpha parameters). This makes it 
possible to use lower indexed harmonic Fourier 
series coefficients of the output than input harmonics 
for the estimation of denominator parameters which 
is advantageous because lower harmonics contain 
more important information on the system. This 
simple idea causes a huge difference in the 
estimation performance of denominator parameters 
and affects to the estimation of numerator 
parameters through the weighting matrix in the beta-
stage which use alpha parameters. 

 Moreover, we propose to modify the beta-stage 
by using a non-harmonic input for the probing 
signal. By using non-harmonic input, one step 
decoupling of numerator parameters (called beta 
parameters) is possible, which decreases the 
computation burden and increases estimation 
performance compared to Pearson’s beta-stage.  
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 Following a presentation of the models, the 
decoupling procedures for the new algorithm is 
delineated and the least squares identifiers and the 
weighting matrixes for both stages in the modified 
algorithm are formulated. Finally, the simulation 
example is illustrated for the performance 
comparison. 

2 FREQUENCY DOMAIN MODEL  

Consider a time-invariant, bounded-input bounded-
output stable linear differential system with scalar 
input  and scalar output  modeled on a 
finite time interval [0,T] by the nth order differential 
equation:  
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equivalently with operator polynomials  
in  and with  normalized to unity: 
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))(),(( tytu  denote an input/output data pair, and  

denotes an additive-output white Gaussian noise 
disturbance as defined by 
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where )(τδ  is the Dirac delta function.  Assuming 
orders  of the polynomial pair  
are specified with , the problem is to estimate 
the parameters  and , 
given noise-corrupted data truncated to a time 
interval of length T. A “resolving frequency” 
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0ω  is 
defined in relation to [0, T] by T/20 πω = . 

To introduce the Modulating Function 
Technique (MFT), define a set of the nth order 
complex Fourier type modulating function (Pearson, 
1998): 
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where 0ω  is the resolving frequency, T  is the  
time interval of the data block, and M is an integer 
for controlling the highest frequency and number of 
algebraic equations. Each )(tmφ  satisfies the end 
point conditions: 
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Using the binomial expansion, )(tmφ  can be 
written as: 
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Then define a Shinbrot-type moment functional 
(Pearson, 1998) of order n given  on [0,T]: )(tx
         (8) 
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where  is the Fourier coefficient of  at 
frequency 
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0ωk  as shown in equation (11).  
   If ) is any polynomial of degree n (or less) in 
the differential operator  and if  is 
any n-times differentiable function on [0,T] or n-
times mean-square differentiable in the case of 
stochastic signals, then as stated (Pearson, 1998): 
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Equation (3) will be converted to the frequency 
domain via the Shinbrot-type moment functionals of 
order n in equation (9). The result is  
  mmm Eccc ′+Γ′=′φ , },1,0{ L=∈ Zm         (10) 
where prime denotes the transpose of vector/matrix 
and the following definitions apply: 
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  [ ]][][][ kYkAk =φ , [ ]][][][ kUkBk =Γ ,   ][][][ kVkAkE =
and ( )][],[],[ kVkYkU  denote the kth harmonic 
Fourier series coefficient triplet defined by  
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   In addition to the pair , it is assumed that 
a bandwith 

B

),( bnn
ω  is specified within which the user 

will extract frequency components of the data to be 
used in estimating the parameters. This means that 
the following constraint applies if is the highest 
harmonic to be sought from the data using (11): 
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 Assuming  is a bandlimited white noise 
process with passband > 

)(tv

BWω , the equation error 
 is transformed to )(tv

       
mEcm ′=)(ε ,  Zm∈   (12) 

which is still zero-mean Gaussian.  
   The parameter decoupling and improvement of 
estimation performance in parameter space for the 
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model (10) is the main focus for the remainder of 
this paper. 

3 DECOUPLING THE ESTIMATE 

Given the system bandwidth, a set of  integers 
 is defined by 

BWM

BWZ { }BWBW MZ ,,2,1 L=  such that the 
frequencies 0ωω kk = ,  represent 
selected ‘knots’ at which to estimate the transfer 
function 
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of  is assumed to satisfy the equality:  
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This need is based on the condition that the highest 
frequency extracted from the data does not exceed 
the bandwidth. The question of selecting an 
appropriate 

0ω  and T is discussed later. Let an 
 be selected along with a complex number 
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represents the sinusoidal signal with amplitude of 
TC /2 α

 and frequency 
0ωαm  that is applied to the 

system over a [0,T] time interval. However, 
excitation of all modes on this interval is a necessary 
condition to avoid degeneracy in estimating the α  
parameters. Corresponding to this choice, the jth 
Fourier series coefficient from (11) for  is: )(tuα
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where  denotes the discrete unit pulse. [ ]jδ

Substituting (15) into (10) gives 
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,  and  have the same 
definition as in (10) and their components are 
defined by: 
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where  represents the kth harmonic Fourier 
series coefficient of the observed response   
on [0,T] to the sinusoid (14) as computed from (11). 
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   In the modified algorithm, the least squares 
formulations will focus on estimating the  
parameters 
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and the real-valued α  and 
βθ  parameters are 

defined by 
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3.1 Modified Alpha Stage  

In Pearson’s alpha-stage algorithm, the harmonics of 
)1( +αm  through  were used for 

regressor and regressand, and the lowest harmonic 
which can be used is 2 when . Because the 
lower harmonics of the output, especially 
fundamental, contain the more useful information of 
the system, we propose to apply a high frequency 
sinusoid and use lower indices of the Fourier series 
coefficients than the value of  for the estimation 
of the 
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α  parameters. To take advantages of low 

index Fourier series coefficients, let us set  
       1++= nMm αα

  (18) 
where   is user a chosen frequency index in the 
modified alpha-stage, and its recommended range is 
shown in (19). i.e., apply a sinusoid with frequency 

αM

0)1( ωα ++ nM  which is right above the bandwidth 
and amplitude TC /2 α

as a probing signal. With 
this probing input, all low harmonics from DC to 

)( nM +α
 of the output data (which covers the 

system bandwidth) can be used for the estimation of 
the denominator by defining a new , a set of 
frequency index m values that makes the 

αZ
α  

parameters decouple from the 
βθ  parameters in the 

polynomial , i.e., define   )( kiB ω
 { }ntonMwithMmmZ 42~0: ααα ≤≤=  (19) 
The  in the modified alpha-stage includes DC as 
well as the fundamental. This is the major difference 
between Pearson’s alpha-stage and the modified 
alpha-stage.  

αZ

 The one restriction which is sufficient to 
facilitate the decoupling over the positive integers, 
i.e., to ensure that  0=Γ′ mc  in (10), for the input 
(14) with  in (18), is 

αm
         

αmm <<0           (20) 
which will provide a total of  frequency 
domain equations including the DC component. 

1+αM
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With , the right side of (10) reduces to 
αZm∈ mEc′  

and utilizing the relation αω ][1)( 0 kikA Λ+=  it can 
be rearranged as a linear regression on α . 
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   To change the complex-valued regression model 
into a real-valued column vector linear regression 
model, an equivalent real-valued regression is 
defined as follows: 
         (22) 

Α+−= εαcc QY
where the following notation applied for the 
combined real and imaginary quantities: 
    

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

′

′
′

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

′

′
′

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

′

′
′

=
Α

α

α

α

α

α

α ε

M

M

M

M

c

M

M

c

Ec

Ec
Ec
Ec

Ec
Ec

Qc

Qc
Qc
Qc

Qc
Qc

Q

Yc

Yc
Yc
Yc

Yc
Yc

Y

Im

Im
Im
Re

Re
Re

,

Im

Im
Im
Re

Re
Re

,

Im

Im
Im
Re

Re
Re

1

0

1

0

1

0

1

0

1

0

1

0

M

M

M

M

M

M

 

)1(2 +ℜ∈ αM
cY   ,   and  nM

cQ ×+ℜ∈ )22( α )1(2 +
Α ℜ∈ αε M

Note that the row dimension of ,  and 
cY cQ Αε  is 

. Based on this regression model and 
assuming linearly independent regressors and zero-
mean Gaussian residuals 
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Αε  with a nonsingular 
covariance matrix { }ΑΑ

′= εεα EW , a weighted least 
squares estimate is defined by 
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 is a symmetric positive definite 
weighting matrix. 
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   Moreover, α̂   can be estimated by the iterative 
method (Shen, 1993), which can be expressed by the 
following equation:  
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1
 denotes the covariance matrix of the 

residual vector, which will be shown in equation 
(41), as a function of unknown parameter 
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αθ  and 
evaluated at the previous iterate 

1, −kαθ . Thus 
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3.2 Weighting Matrix in the Modified 
Alpha Stage 

The composite residual vector 
Αε  can be expressed 

as follows 
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αC  is a  real matrix defined by 
sequentially moving the row vector c  over one 
entry to the right with 0’s elsewhere, as shown 
above,  is complex with 
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3.3 Modified Beta Stage  

Pearson’s beta-stage algorithm needs another 
computation step to extract the  parameters from 
the number 

ib

( ){ }2/1+bnceil  of algebraic equations 
where the function ceil(A) rounds the elements of A 
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to the nearest integer greater than or equal to A.. 
Moreover, his algorithm needs  times 
of the weighting matrix inversion computation in the 
beta-stage. This inconvenience was eventually 
caused by the harmonic operation in the beta-stage. 
Since the extracted parameter ’s are inversely 
proportional to , as will be shown in (38), and 
the resolving frequency 

( ){ 2/1+bnceil }

ib
i

0ω

0ω  is usually a small 
number for high resolution, less than 1, the bias and 
standard deviation of ’s are amplified. This 
problem is inevitable as long as the indirect 
parameter estimation algorithm, which uses 
harmonic sinusoids for a probing signal is adopted in 
the beta-stage. To improve the problems of 
inconvenience and inaccuracy in estimating the 
numerator parameters with Pearson’s beta-stage 
algorithm, the modified beta-stage is proposed, 
which estimates numerator parameters at one shot 
using non-harmonic operation. 
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   Again, assume that an estimate α̂  has been 
obtained following the completion of the modified 
alpha-stage as described in the previous section, and 
consider a non-harmonic sinusoidal input, ) , like 
a sweep sine, as a probing signal in the modified 
beta-stage. To ensure the excitation of all modes, a 
sweep sine with Fourier coefficients, which covers 
the system bandwidth, should be chosen. The model 
(10) is changed by: 
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 ,   and  )1(2 +ℜ∈ βξ M bnM ×+ℜ∈Φ )22( β )1(2 +
Β ℜ∈ βε M

Note that the row dimension of ξ ,  and Φ Βε  is 

)1(2 +βM . Based on this regression model and 
assuming linearly independent regressors and zero-
mean Gaussian residuals  with a nonsingular 
covariance matrix 

Βε

{ }ΒΒ ′= εεβ EW , the estimate of 
βθ  

can be obtained by 
          ( ) ξθ βββ

111ˆ −−− ′ΦΦ′Φ= WW   (34) 
Note that  is estimated by the Weighted Least 
Squares (WLS) using the 

βθ̂

α̂  estimates, which is 
accurately estimated in the modified alpha-stage. 

3.4 Weighting Matrix in the Modified 
Beta Stage 

If we follow the same procedure in section 3.2, we 
get the block diagonal covariance matrix for the 

)1(2 +βM  dimensional residual vector Βε  in the 
modified beta-stage:  
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where
)][ˆ,,]1[ˆ,]0[ˆ(

222 nMAAAdiagPP H += βββ L
, 2

0

2
)(ˆ][ˆ ωimAmA =

 

and .  is a  real 
matrix which has the same pattern as (26) and  is 
a function of parameter 

1]0[ˆ =A
βC )1()1( ++×+ nMM ββ

βP

α̂ , which is estimated in the 
modified alpha-stage. Note that the weighting 
matrix for the modified beta-stage, , needs to be 
computed only once to estimate the  numerator 
parameters.      

βW

ib
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3.5 Selection of 0ω  with Modified 
Algorithm 

The highest harmonics required of the output data 
over the data intervals [ ]  and Ttt +αα , [ ]Ttt +ββ , , are 
the th and ) th harmonics respectively, 
cf. (22) and (33). For a strictly proper rational 
transfer function, i.e., , and assuming the 
same ratio for the selection of  and  in 
((19), (32)) is chosen, then  is bigger than 

 and the corresponding highest frequency is 

)( nM +α ( nM +β

bnn >

αM βM

)( nM +α

)( nM +β

0)( ωα nM + . It follows that 
0ω  should be chosen as 

         
)(0 nM

BW

+
=

α

ω
ω   (36) 

With this choice, both frequency models in (22) and 
(33) cover the system bandwidth 

BWω . Also, this 
choice assures adherence to the equality (20) made 
earlier as a condition on selecting .  

BWM
   All modes of a system might not be exited by a 
low frequency sinusoid as used in Pearson’s alpha 
stage algorithm. But by applying this one sinusoid 
with a frequency that is just outside bandwidth, all 
high frequency system information within the 
system bandwidth could be obtained. This is another 
great advantage of the modified algorithm. 

4 SIMULATION RESULTS 

An 8th order system with 4th-order in the numerator, 
as shown in the following, was used to evaluate and 
compare the performance of the Pearson’s 
decoupling algorithm (Pearson, 1998) and the 
modified decoupling algorithm devised in this study: 

 
)8.001.0)(5.001.0)(3002.0)(2.103.0(

1.0452)(
234

isisisis
sssssH

±+±+±+±+
++++

=
(37) 

For the above specific system, its step response 
will take about 400 seconds to reach steady state, 
which is a lightly damped case. The data were 
collected during the system transient state, mostly 
during the first 50 sec. The system bandwidth is 3.38 

. 2048 data of input/output were sampled 
for T sec, where T varies with  in each 
algorithm.   

sec]/[rad

αm

   Fig. 1 shows the Bode diagram of the system 
used for simulation. The noise-to-signal ratio (NSR), 
which characterizes the percent additive noise on the 
output is defined as 
  

     

Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

−80

−60

−40

−20

0

20

40

H(s)=(s4+2s3+5s2+4s+0.1)
/(s+0.03±j1.2)(s+0.002±j3)(s+0.01±j0.5)(s+0.01±j0.8)

10
−3

10
−2

10
−1

10
0

10
1

−540

−360

−180

0

180

 
Figure 1: Bode diagram of the system 
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where  is a noise free signal, and  is an 
additive noise sequence. As for a true parameter 

)(0 ty )(tn

jθ , 
its ensemble average  and the number of 
parameters L, a composite normalized bias error 
(CNB) and standard deviation (CNSTD) are defined 
as: 
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where 
jσ  is the standard deviation of the estimate 

of the true 
jθ . These will be used to measure the 

accuracy of the different algorithms. 
   In Pearson’s algorithm, we used the routine 
SOLVE in Symbolic Math Toolbox of MATLAB to 
solve the algebraic equations for the extraction of 

’s parameters in the numerator from beta 
parameters,  

ib

)(Re][ 0ωβ kk
R imBm = , , .  )(Im][ 0ωβ kk

I imBm = L,2,1=k

For instance, 5 ’s of the example system in 
equation (37) are shown; 
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Note that the parameter ’s are inversely 
proportional to , and  is usually a small 
number for high resolution. Thus the computed ’s 
from the 

ib
i

0ω 0ω

ib
β ’s have wide distribution. This is the 
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reason why Pearson’s beta-stage produces large 
composite STD. This is the disadvantage of “Quasi-
Harmonic operation”. To improve this large STD 
problem, the modified beta-stage is suggested with a 
simulation example in the next section.  
   In this section, we will compare the modified 
decoupling algorithm denoted by αβMOD , which 
uses the modified alpha-stage and modified beta-
stage, with Pearson’s algorithm, denoted by HAR, 
and an intermediate algorithm denoted by αMOD , 
which uses the modified alpha-stage and Pearson’s 
beta-stage. In the experiment setup, we focus on 
adding the same noise level for the different 
algorithms. The system bandwidth BWω  is 3.38 

 and the sampling rate is around 45 Hz. 
500 Monte Carlo runs were made for each NSR 
under the initial condition fixed at zeros. Here we 
will explain simulation setups for three different 
algorithms. 

sec]/[rad

 1) Input parameters for the Pearson’s algorithm: 
For the estimation of denominator parameters in the 
alpha-stage, ,  and 11 jC +=α 1=αm 162 == nMα

 
were chosen, so 0.13520 =ω   and the 
observation time interval is  [sec], and 

 was used for a probing signal 
in the alpha-stage. For the estimation of numerator 
parameters in the beta-stage, three harmonics were 
applied to the system one by one to estimate 3 sets 
of 

sec]/[rad
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β  parameters and they are given 
by: , , 
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 2) Input parameters for the αMOD  algorithm:  
25=αm ,  and  were chosen, 

so the probing signal in the modified alpha-stage is 
. For the beta-stage, the 

same 3 harmonic inputs as in Pearson’s beta-stage 
were used.   and 

162 == nMα 11 jC +=α

titi eCeCtu 00 2525)( ω
α

ω
αα

−∗+=

0.14080 =ω sec]/[rad 44.61=T  
 were used both in the alpha and beta stage. 

Notice that  and T are a little different with those 
of Pearson’s algorithm [4] because the computation 
methods of  for both algorithms are different. 

[sec]

0ω

0ω
 3) Input parameters for the αβMOD  algorithm:  
Here, , 25=αm 162 == nMα

 and  were 
chosen, and   was applied 
for the modified alpha-stage and 
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ω
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for the modified beta-stage, which produced the 

same output norm as  to ensure the same level 
of noise can be added in the alpha and beta stage. 
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Figure 2: CNB and CNSTD of Pearson’s algorithm and 

the modified algorithm 
 
 Fig. 2 shows the composite bias and STD for 
three different algorithms. For the composite bias of 
the denominator shown in Fig. 2(a), the bias for 
Pearson’s algorithm is as small as that for the 
modified alpha-stage algorithm when the NSR is 
less than 1.5 %, but the composite bias and 
composite STD of the denominator sharply increase 
to 17% and 21%, respectively, as the NSR increases 
from 2% to 6%. In other words, Pearson’s alpha-
stage algorithm is very sensitive to noise.  
The composite biases and the composite STDs of the 
denominator for αMOD  and αβMOD  are almost 
the same because they both use the modified alpha-
stage algorithm, see Fig. 2(a) and (b). The modified 
alpha-stage shows excellent performance over the 
Pearson’s alpha-stage. The αMOD  shows better 
performance than Pearson’s algorithm in beta-stage 
even though the two algorithms use the same 
Pearson’s beta-stage. That results from the fact that 
the αMOD  uses a weighting matrix in Pearson’s 
beta-stage based on the accurately estimated 
denominator parameters by the modified alpha-
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stage. The composite bias of the numerator was 
greatly reduced by the αMOD , but the composite 
STD of the numerator was not much improved by 
the αMOD , see Fig. 2(c) and (d). In Fig. 2(c) and 
(d), the αβMOD  shows better performance for the 
numerator than the αMOD  both in composite bias 
and composite STD aspects. This means that the 
modified beta-stage improves not only standard 
deviation but also bias. The composite bias of the 
numerator for Pearson’s algorithm is very large as 
we expected. But it is greatly reduced by the 
modified beta-stage algorithm. Even though the 
modified beta-stage algorithm reduces the composite 
bias and composite STD of the numerator, those 
values are larger than the denominator’s. 
From Fig. 2(a) ~ (d), we can know that both the 
modified alpha-stage and modified beta-stage 
algorithm have decreased the bias and standard 
deviation at each NSR. Fig. 2(e) and (f) show the 
composite bias and composite STD of all parameters 
including the denominator and numerator. The 

αβMOD , the proposed algorithm, produces the 
lowest bias and standard deviation among the three 
algorithms.  

5 CONCLUDING REMARKS 

We have presented a new parameter decoupling 
algorithm for the transfer function identification on 
the basis of Pearson’s algorithm using harmonic and 
non-harmonic signals. We have also shown with 
simulation examples that these algorithms offer 
significant improvement in estimation performance 
and computation burden over existing methods. 

 In the new algorithm, we apply a harmonic 
sinusoid with one high frequency component outside 
the system bandwidth in the alpha-stage, so that we 
can use the lower indexed Fourier coefficients for 
the denominator estimation. Also, a one step 
estimation algorithm was adopted using a sweep sine 
input as probing signal for the numerator parameters 
in beta-stage. By using one step estimation 
algorithm, the computation burden was decreased 
and the estimation performance was increased. 
Clearly, simulation results show that the modified 
parameter decoupling algorithm is much better than 
Pearson’s algorithm. 
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