
CONTINUOUS-TIME SIGNAL FILTERING FROM
NON-INDEPENDENT UNCERTAIN OBSERVATIONS

S. Nakamori
Department of Technology. Faculty of Education, Kagoshima University

1-20-6, Kohrimoto, Kagoshima 890-0065, Japan

A. Hermoso-Carazo
Departamento de Estadı́stica e Investigación Operativa, Universidad de Granada

Campus Fuentenueva, s/n, 18071 Granada, Spain
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Abstract: Filtering algorithms are presented as solution of the least mean-squared error linear estimation problem of
continuous-time wide-sense stationary scalar signals from uncertain observations perturbed by white and
coloured additive noises. These algorithms, one of them based on Chandrasekhar-type equations and the
other on Riccati-type ones, are derived assuming a specific type of dependence between the Bernoulli ran-
dom variables describing the uncertainty and do not require the whole knowledge of the state-space model.
By comparing both algorithms it is deduced that the Chandrasekhar-type one is more advantageous from a
computational viewpoint.

1 INTRODUCTION

In the mid-seventies, the replacement of the Riccati-
type equations by a set of Chandrasekhar-type ones
in the algorithms proposed as solution of the least
mean-squared error (LMSE) linear estimation prob-
lem led to more advantageous algorithms from a com-
putational point of view since the Chandrasekhar-type
algorithms contain, generally, less difference or dif-
ferential equations than the ones based on Riccati-
type equations. For continuous-time invariant sys-
tems, Kailath (1973) was the first author who pro-
posed an algorithm of this kind to solve the LMSE
linear estimation problem. This work was the starting
point for many posterior contributions. We shall men-
tion, among others, Sayed and Kailath (1994) who,
assuming a full knowledge of the state-space model,
obtained Chandrasekhar-type algorithms for a class of
time-variant models. Recently, Nakamori (2000) has
proposed a Chandrasekhar-type algorithm to estimate

a continuous-time wide-sense stationary signal from
observations perturbed by white and coloured addi-
tive noises but assuming, in contrast to the above pa-
pers, that the state-space model is not available and
using covariance information.

On the other hand, in the last decades, consider-
able attention has been given to systems with uncer-
tain observations, since they model many real situ-
ations. These systems are characterized by includ-
ing in the observation model, besides additive noise,
a multiplicative noise described by Bernoulli random
variables, which determine the presence or absence of
signal in the observations. These systems are then ap-
propriate to model situations in which there exist in-
termittent failures in the observation mechanism and,
hence, the observations may contain noise plus sig-
nal or only noise in a random manner; for example,
communication systems with random interruptions.

The LMSE linear estimation problem of discrete
signals from uncertain observations has been ap-
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proached under different hypotheses. For example,
Hermoso and Linares (1994) proposed a Riccati-
type algorithm in discrete-time systems, considering
that the Bernoulli random variables are independent;
on the other hand, Hadidi and Schwartz (1979) ob-
tained an estimation algorithm based also on Ric-
cati equations, but considering a specific type of de-
pendence between the Bernoulli variables. Both pa-
pers are based on a full knowledge of the state-space
model; recently, Nakamori et al. (2004) have pro-
posed a Chandrasekhar-type filtering algorithm for
wide-sense stationary signals from uncertain observa-
tions without using the state-space model but covari-
ance information.

In this paper, we analyze the LMSE linear filter-
ing problem of continuous-time wide-sense stationary
scalar signals from uncertain observations perturbed
by white and coloured additive noises. Assuming
that the Bernoulli random variables present a type of
dependence analogous to that considered by Hadidi
and Schwartz (1979), we propose a Chandrasekhar
and a Riccati-type algorithm, derived by using covari-
ance information. The comparison between both al-
gorithms shows the computational advantages of the
Chandrasekhar-type one.

2 ESTIMATION PROBLEM

Let us consider a continuous-time scalar observation
equation described by

y(t) = u(t)z(t)+v(t)+v0(t), z(t) = Hx(t), t ≥ 0
(1)

where y(t) represents the observation of the signal
z(t), perturbed by a multiplicative noise, u(t), and
by white and coloured additive noises, v(t) and v0(t),
respectively; the signal is expressed as a linear com-
bination of the components of the n-dimensional state
vector x(t).

Denoting by Φ and Φ0 the system matrices of the
state and the coloured noise, respectively, we have as-
sumed the following hypotheses on the processes ap-
pearing in equation (1):

(H.1) The signal process {z(t); t ≥ 0} is wide-sense
stationary with zero mean, being its autoco-
variance function Kz(t, s) = E[z(t)z(s)] =
Kz(t − s), for t, s ≥ 0. Moreover, the cross-
covariance function of the state x(t) and the
signal z(s), Kxz(t, s), verifies the differential
equation

∂Kxz(t, s)

∂t
= ΦKxz(t, s), s < t.

(H.2) The additive noise {v(t); t ≥ 0} is a zero-mean
white process whose autocovariance function is

given by E[v(t)v(s)] = RδD(t− s), for t, s ≥
0, being R 6= 0 and δD the Dirac delta function.

(H.3) The coloured noise {v0(t); t ≥ 0} is
a zero-mean wide-sense stationary process
with autocovariance function Kv0

(t, s) =
E[v0(t)v0(s)] = Kv0

(t−s), for t, s ≥ 0, which
satisfies the differential equation

∂Kv0
(t, s)

∂t
= Φ0Kv0

(t, s), s < t.

(H.4) The multiplicative noise {u(t); t ≥ 0} de-
scribing the uncertainty in the observations is
modelled by identically distributed Bernoulli
random variables with initial probability vector
(1 − p, p)T and conditional probability matrix
P (t/s). We assume that the (2, 2)-element of
this matrix is independent of t and s, that is,

P (u(t) = 1/u(s) = 1) = p22

for t 6= s. Under these considerations, it is clear
that

E [u(t)u(s)] =

{
p, if t = s
p p22, if t 6= s

(H.5) The processes {x(t); t ≥ 0}, {u(t); t ≥ 0},
{v(t); t ≥ 0} and {v0(t); t ≥ 0} are mutually
independent.

Under these considerations, our aim consists of de-
termining an algorithm to calculate the LMSE linear
estimator of the signal z(t) given the observations un-
til time t, that is {y(s); 0 ≤ s ≤ t}. It is clearly ob-
served that this estimator, denoted by ẑ(t), can be ex-
pressed as ẑ(t) = Hx̂(t), where x̂(t) is the LMSE
linear filter of the state. For this reason, we have fo-
cussed our interest on obtaining an algorithm for x̂(t),
which can be expressed as

x̂(t) =

∫
t

0

h(t, τ)y(τ)dτ (2)

where {h(t, τ), 0 ≤ τ ≤ t} denotes the impulse-
response function.

As a consequence of the Orthogonal Projection
Lemma (OPL) and the hypotheses on the model, x̂(t)
satisfies the Wiener-Hopf equation, given by

pKxz(t, s)=

∫
t

0

h(t, τ)E [y(τ)y(s)] dτ, 0 ≤ s ≤ t

(3)
or, equivalently,

h(t, s)R = pKxz(t, s)−

∫
t

0

h(t, τ)K(τ, s)dτ,
(4)

K(τ, s) = pp22HKxz(τ, s) +Kv0
(τ, s).

In order to determine a differential equation for x̂(t),
we differentiate (2) with respect to t and so, we obtain

dx̂(t)

dt
=

∫
t

0

∂h(t, τ)

∂t
y(τ)dτ + h(t, t)y(t). (5)
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On the other hand, differentiating (3) with respect to t,
from (H.1) and the OPL, it is had that, for 0 < s < t,
∫

t

0

(
Φh(t,τ)−

∂h(t,τ)

∂t

−h(t,t)[p22Hh(t,τ) + g(t,τ)]
)
E[y(τ)y(s)] dτ =0

where {g(t, τ), 0 ≤ τ ≤ t} represents the impulse-
response function of the coloured noise filter, v̂0(t).
Then, it is clear that this integral equation will be sat-
isfied if we consider a function h satisfying

∂h(t, τ)

∂t
= Φh(t, τ)− h(t, t)[p22Hh(t, τ) + g(t, τ)]

(6)
for 0 ≤ τ ≤ t. Hence, by substituting (6) in (5), the
following differential equation for x̂(t) is derived

dx̂(t)

dt
= Φx̂(t) + h(t, t) [y(t)− p22Hx̂(t)− v̂0(t)]

(7)
with initial condition x̂(0) = 0.

By following an analogous reasoning, it is obtained
the Wiener-Hopf equation for v̂0(t),

g(t, s)R = Kv0
(t, s)−

∫
t

0

g(t, τ)K(τ, s)dτ, 0 ≤ s ≤ t

(8)
and the following differential equation,

∂g(t, τ)

∂t
= Φ0g(t, τ)−g(t, t)[p22Hh(t, τ)+g(t, τ)].

(9)
Then, v̂0(t) verifies the differential equation

dv̂0(t)

dt
= Φ0v̂0(t)+g(t, t) [y(t)− p22Hx̂(t)− v̂0(t)]

(10)
with initial condition v̂0(0) = 0.

To complete the algorithm, in the following section
we show two different ways to calculate the filtering
gains, h(t, t) and g(t, t).

3 FILTERING ALGORITHMS

Next we derive two algorithms as a solution of the
LMSE filtering problem: in one of them, the filtering
gains are obtained from Chandrasekhar-type equa-
tions whereas, in the other, Riccati-type ones are used.

3.1 Chandrasekhar-type algorithm

Theorem 1. The filter of the signal, ẑ(t), is calcu-
lated from the relation ẑ(t) = Hx̂(t) where the state
filter, x̂(t), satisfies the differential equation (7) and
the coloured noise filter, v̂0(t), is given from (10).

The filtering gains are calculated as follows

dh(t, t)

dt
= −h(t, 0) [p22Hh(t, 0) + g(t, 0)] (11)

dg(t, t)

dt
= −g(t, 0) [p22Hh(t, 0) + g(t, 0)] (12)

where h(t, 0) and g(t, 0) satisfy the following differ-
ential equations

dh(t, 0)

dt
= Φh(t, 0)− h(t, t)[p22Hh(t, 0) + g(t, 0)]

(13)
dg(t, 0)

dt
= Φ0g(t, 0)− g(t, t)[p22Hh(t, 0) + g(t, 0)]

(14)
being the initial conditions

h(0, 0) = pR−1Kxz(0). (15)

g(0, 0) = R−1Kv0
(0). (16)

Proof. Differentiating (4) with respect to t and s, we
obtain the following expression, valid for 0 ≤ s ≤ t,
(
∂h(t, s)

∂t
+

∂h(t, s)

∂s

)
R

=−h(t, 0)K(0,s)−

∫
t

0

(
∂h(t,τ)

∂t
+

∂h(t,τ)

∂τ

)
K(τ,s)dτ

where we have used that, from the stationary property

of the signal process,
∂Kxz(t, s)

∂t
+

∂Kxz(t, s)

∂s
= 0.

Then, if we define a function J satisfying

J(t, s)R = K(0, s)−

∫
t

0

J(t, τ)K(τ, s)dτ, 0 ≤ s ≤ t

(17)
it is immediately obtained that

∂h(t, s)

∂t
+

∂h(t, s)

∂s
= −h(t, 0)J(t, s), 0 ≤ s ≤ t.

(18)
Next, if (4), replacing s by t− s, is multiplied on the
left by p22H and the resultant expression is added to
(8) replacing also s by t− s, we obtain

[p22Hh(t, t− s) + g(t, t− s)]R

= K(s, 0)−

∫
t

0

[p22Hh(t, t−τ)+g(t, t−τ)]K(s, τ)dτ

(19)
for 0 ≤ s ≤ t. Then, by comparing (17) and (19),

J(t, s) = p22Hh(t, t− s) + g(t, t− s), 0 ≤ s ≤ t
(20)

and, consequently, from (18) and (20), (11) is derived.
On the other hand, the differential equation (13)

and the initial condition (15) are respectively derived
by taking τ = 0 in (6) and s = t = 0 in (4).

By following an analogous reasoning, the differen-
tial equations (12) and (14) and the initial condition
(16) are deduced. ¤
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3.2 Riccati-type algorithm

Theorem 2. The filter of the signal, ẑ(t), is calcu-
lated from the relation ẑ(t) = Hx̂(t) where the state
filter, x̂(t), satisfies the differential equation (7) and
the coloured noise filter, v̂0(t), is given from (10).
The filtering gains are given by

h(t, t)=R−1
[
pKxz(0)−p22S(t)H

T −T (t)
]

(21)

g(t, t)=R−1
[
Kv0

(0)−p22T
T (t)HT −U(t)

]
(22)

where S(t) = E[x̂(t)x̂T (t)], T (t) = E[x̂(t)v̂0(t)]

and U(t) = E[v̂0

2(t)] satisfy the following differen-
tial equations

dS(t)

dt
=ΦS(t)+S(t)ΦT+Rh(t, t)hT(t, t),

dT (t)

dt
=ΦT (t)+Φ0T (t)+Rg(t, t)h(t, t),

dU(t)

dt
= 2Φ0U(t)+Rg2(t, t).

(23)

Proof. From the OPL and the hypotheses on the
model, we have that

S(t) = E[x̂(t)xT (t)] = p

∫
t

0

h(t, τ)KT

xz
(t, τ)dτ

T (t) = E[x̂(t)v0(t)] =

∫
t

0

h(t, τ)Kv0
(τ, t)dτ

U(t) = E[v̂0(t)v0(t)] =

∫
t

0

g(t, τ)Kv0
(τ, t)dτ.

(24)
Then by putting s = t in (4) and (8) and using (24),
equations (21) and (22) are obtained. Again, from
(24), the differential equations given in (23) are de-
rived by using (6) and (9). ¤

By comparing the algorithms proposed in the above
theorems, it is observed that the Chandrasekhar-
type one contains less differential equations than the
Riccati-type algorithm; specifically, 3n + 3 are the
differential equations included in the Chandrasekhar-
type algorithm, and n2 + 2n + 2, in the Riccati-type
one. So, if n ≥ 2, there exists a reduction regarding
the number of equations in the Chandrasekhar-type
algorithm, which implies a decrease in the computa-
tion time. Hence, the Chandrasekhar-type algorithm
is more advantageous than the Riccati-type one in a
computational sense.

Finally, as a measure of the estimation accuracy, the
filtering error variance, which is defined by P (t) =

E
[
{z(t)− ẑ(t)}

2

]
, can be calculated as

P (t, t) = H
[
Kxz(t, t)− S(t)HT

]

with S(t) given in Theorem 2.

4 CONCLUSION

In this paper, the LMSE linear filtering problem of
wide-sense stationary scalar signals in continuous-
time systems with uncertain observations perturbed
by white and coloured additive noises is analyzed.
Assuming uncertainty non-independent we derive two
algorithms without requiring the whole knowledge of
the state-space model but using covariance informa-
tion. Both algorithms differs in the way of calculat-
ing the filtering gains. From the comparison between
them it is deduced that the Chandrasekhar-type one
is computationally more appropriate than the Riccati-
type algorithm.
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