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Abstract: The research reported in the paper aims the development of a suitable neural architecture for implementing 
the Bayesian procedure for solving pattern recognition problems. The proposed neural system is based on an 
inhibitive competition installed among the hidden neurons of the computation layer. The local memories of 
the hidden neurons are computed adaptively according to an estimation model of the parameters of the 
Bayesian classifier. Also, the paper reports a series of qualitative attempts in analyzing the behavior of a 
new learning procedure of the parameters an HMM by modeling different types of stochastic dependencies 
on the space of states corresponding to the underlying finite automaton. The approach aims the development 
of some new methods in processing image and speech signals in solving pattern recognition problems. 
Basically, the attempts are stated in terms of weighting processes and deterministic/non deterministic 
Bayesian procedures. The aims were mainly to derive asymptotical conclusions concerning the performance 
of the proposed estimation techniques in approximating the ideal Bayesian procedure. The proposed 
methodology adopts the standard assumptions on the conditional independence properties of the involved 
stochastic processes.  

1 HMM IN BAYESIAN LEARNING 

Stochastic models represent a very promising 
approach to temporal pattern recognition. An 
important class of the stochastic models is based on 
Markovian state transition, two of the typical 
examples being the Markov model (MM) and the 
Hidden Markov Model (HMM).  

The latent structure of observable phenomenon is 
modeled in terms of a finite automaton Q, the 
observable variable being thought as the output 
produced by the states of Q.  Both evolutions, in the 
spaces of non observable as well as in the space of 
observable variables, are assumed to be governed by 
probabilistic laws.  

In the sequel, we denote by ( ) 0nn ≥Λ  the stochastic 
process describing the hidden evolution and by 
( ) 0nnX ≥  the stochastic process corresponding to the 
observable evolution. 

Let Q be the set of states of the underlying finite 
automaton; mQ = .  We denote by nτ  the 
probability distribution on Q at the moment n. Let 
( )P,,ℑΩ  be a probability space, ( )σ,C,ℵ  be a 
measure space, where σ  is a σ -finite measure. The 
output of each state Qq∈  is represented by the 
random element ℵ→Ω:X  of density function 

( ).fq . Let ξ  be the apriori probability distribution 
on Q. We assume that ( ) 0q,Qq ≠∈∀ ξ . The 
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conclusions on the hidden evolution are derived 
using the Bayesian procedure when the apriori 
probability distribution ξ  and the set of density 
functions ( )Qq,f q,n ∈  are known. 

Let  be a risk function. The 
outputs of the automaton are represented by the 
sequence of random elements , where the 
output at the moment n,  is distributed 

),0[QQ:L ∞→×

( ) 0nnX ≥

nX ( )nqρ  if it 

was emitted by the state . Let nq [ ]( ){ }ℵ
∈= Q1,0t/tR  

be the set of random decision procedures, where, for 
any ,x,Qq,Rt ℵ∈∈∈ ( )( )qxt  is the probability of 
deciding that the output x is produced  by the state q. 

For any  we denote the expected risk by,  Rt∈
( ) ( ) ( ) ( ) ( ) ( )∑∑∫

∈ ∈ ℵ

=
Qq Qq

qq dxxfxtqqLqftR σξξ ,,,  

The Bayesian decision procedure Rt~∈  assures 
the minimum risk that is, 

( ) ( ) ( )f,f,t,Rinff,t~,R
Rt

ξΦ∆ξξ
∈

=   

and it is given by, 
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The true evolution in the space Q of non 
observable variables is governed by probabilistic 
laws, ( ) 0nn ≥τ , where nτ  represents the probability 
distribution on Q at the moment n.  

Let  be a sequence of subjective utilities 
assigned to the states of the automaton; 

. We assume that, for any 
.  For any  and 

( ) 0nnu ≥

),0[Q:u,0n n ∞→≥∀

( ) 0qu,1n
Qq

n ≠≥ ∑
∈

0n ≥ Qq∈ , 

 stands for the subjective utility assigned to the 
state q at the moment n. Typically,  can be 
taken as the relative emitting frequency of the state q 
during the time interval [ ] . 

( )qun

( )qun

n,0
Let  be a sequence of measurable 

functions, , , a Parzen-
like basis of asymptotically unbiased estimates of 

the system of density functions 

( ) 1nng ≥

),0[:gn ∞→ℵ×ℵ 1n ≥∀

( )Qq,f q ∈  
satisfying a series of convenable regularity 
assumptions. Our method is a supervised technique 
based on the learning sequence 

( )( )1n/X,S nn ≥= Λ , where the true probability 
distribution nτ is approximated by a weighting 
process ( )( ) 0nn Qq,q ≥∈ξ  defined by 

( ) ( ) ( )
( ) ( )∑

∈

=

Qq
n

n
n quq

quqq
ξ
ξξ  representing the guess that q 

is the emitting state at the moment n. The decision 
procedure *

nt
~  is defined by (  in terms of )1 ( )qnξ  

and ( ) ( ) ( ) (∑
=

=
n

1j
jnj

n
q,n X,xgq,

qn
1xf Λδ
ξ

) , where    

( )
⎩
⎨
⎧

≠
=

=
qq,0
qq,1

q,qδ . The criterion function ( )x,qT  

given by ( )2  is replaced by 
( )3 ( ) ( ) ( ) ( )∑

∈

=
Qq

q,nn xfq,qLqx,qT ξ . 

2 THEORETICAL RESULTS 
SUPPORTING THE 
QUALITATIVE ANALYSIS OF 
THE BEHAVIOR OF THE 
LEARNING SCHEME 

 
Let ( ) ( )( )f,t~,REt~R *

n
*

n ξξ =  be the expected risk 

corresponding to the random decision procedure *
nt

~  
when ξ is the true probability distribution on Q and 

( )Qq,ff q,n ∈=  is the set of output density 
functions.  

Theorem 1. (State, 2002) Let  be a 
sequence of measurable functions such that the 
assumptions A

( ) 0nng ≥

1, A2, A3, A4 hold, where,  
( )4A for any  , 1k ≥ ℵ∈∈ x,Qq ,  
( )4A ( )( ) ( )xfX,xgE qkq = . 

If  ( )( )1n/X,S nn ≥= Λ  is a learning sequence 
such that the random elements ( ) 1n,X, nn ≥Λ  are 
independent, nΛ  is distributed ξ  and  is 
distributed  if  

nX

qf qn =Λ , then, for the Parzen-like 

basis ( ) 0nng ≥ , ( ) ( )f,t~Rlim *
nn

ξΦξ =
∞→

. 
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Theorem 2. (State, 2002) Let 
( )( 1n/X,S nn ≥= )Λ  be a learning sequence such 

that the random elements ( ) 1n,X, nn ≥Λ  are 
independent, nΛ  is distributed nτ  and  is 
distributed  if 

nX

qf qn =Λ . If for the sequence 
, the assumptions A( ) 0nng ≥ 1, A2, A3, A4 hold and, for 

any , Qq∈ ( ) ( )qq
n
1lim

n

1j
jn

ττ =∑
=∞→

 , then, 

( )( ) ( )f,f,t~,RElim *
nn

ξΦτ =
∞→

. 

Theorem 3. (State, 2002) Assume that the 
conditions mentioned in theorem 2 hold. If, for any 

, Qq∈ ( ) ( )qqlim nn
ττ =

∞→
 , then, 

( )( ) ( )fftRE nnn
,,~,lim * ττ Φ=

∞→
. 

Theorem 4. (State, 2002) Let 
( )( 1n/X,S nn ≥= )Λ  be a learning sequence such 

that ( 1n,n ≥ )Λ  is a Markov chain of stationary 
transition probabilities having an unique recurrent 
class Q’. If ( )  are independent and  is 
distributed  if 

1n,X n ≥ nX

qf qn =Λ , then 

( )( ) ( )fftRE nn
,,~,lim * ττ Φ=

∞→
, 

where τ  is the probability distributions of 1Λ . 
 If ( 1n,n ≥ )Λ  is a Markov chain then 

( ) 1n,X, nn ≥Λ  is a Markov chain of stationary 
transition probabilities having an unique recurrent 
class ( ){ }U

'Qq
qCx/x,q'R

∈

∈= , where 

( ){ }0xf,x/xC qq ≠ℵ∈= . 

3 NEURAL ARCHITECTURE FOR 
IMPLEMENTING THE 
BAYESIAN PROCEDURE 

*
nt

~
 

We assume that . Then the neural 
architecture consists of the layers  of d and 
respectively 

dR=ℵ

HX F,F
Q  neurons. The neurons of the input 

layer have no local memory, they distribute the 
corresponding inputs toward the neurons of the 
hidden layer . Each neuron of  is assigned to 
one of the pattern classes from Q. For simplicity 
sake, we’ll refere to each neuron of  by its 
corresponding pattern class. The local memory of 
each neuron consists of 

XF

HF HF

HF

HFq∈ ( )qnξ  and the 

parameters needed to compute . The activation 
function of the neuron 

q,nf

HFq∈  at the moment n is 
( ) ( ) ( )qxfxh nq,nq,n ξ= . The layer  is fully 

connected, the connection from q to 
HF

q is weighted 
by ( )( )q,qL− . Consequently, the input 

( )d1 x,...,xx =  applied to  induces the neural 
activations, 

XF

( ) ( ) ( ) ( ) ( ) H
Qq

qnn FqxqTxfqqLqqnet ∈−=ξ−= ∑
∈

,,,0, ,

The recognition task corresponds to the 
identification of the states q  for which ( x,qT )  is 
minimum. This task is solved by installing  a 
discrete time competitive process among the neurons 
of .  Let HF ( ) ( )( )t,qnetftSq =  be the output of the 
neuron HFq∈  at the moment t, where the 
competition process starts at the moment 0 and the 

activation function f is given by . 

We denote by 

( )
⎩
⎨
⎧

<
≥

=
0u,u
0u,0

uf

( ) ( )( )Hq Fq,tStS ∈=  the state at the 
moment t. The initial state is  
( ) ( )( )( )HFq,0,qnetf0S ∈= .  

The synaptic weights of the connections during 

the competition are,
⎩
⎨
⎧

≠−
=

=
qq,

qq,1
w q,q ε

 , where 

0>ε  is a vigilance parameter.  
The update of the state is performed 

synchronously, that is, for any ,  HFq∈
( ) ( ) ( )

( ) ( ) ( )∑

∑

∈

≠

ε−ε+=

=ε−=+

HFq
qq

qq
qq

tStS

tStStqnet

1

1,
    

( ) ( )( )1t,qnetf1tSq +=+ . 
The conclusions concerning the behavior of the 

competition in the space of states stem from the 
following arguments. Note that , for any 

 and 
( ) 0tSq ≤

0t ≥ HFq∈ . 
1. If ( ) 0tSq = , then , hence ( ) 01thq ≥+

( ) 01tSq =+ . Moreover, for any . ( ) 0'tS,t't q =≥

2. Assume that for some , , HF'q,q ∈ 0t ≥
( ) ( ) 0tStS q'q <= . Then for any ,  t't ≥
( ) ( ) 0'tS'tS q'q ≤= . 
3. Assume that for some , , HF'q,q ∈ 0t ≥
( ) ( ) 0tStS q'q << . Then, .  ( ) ( )1tS1tS q'q +≤+

Moreover, for any .  ,t't ≥ ( ) ( )'tS'tS q'q ≤
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Using some of the previous arguments, we get that 
there exists  such that  for any 

. 
( ) 0'qt ≥ ( ) 0tS 'q =

( )'qtt ≥
4. Assume that for , HF'q,q ∈

( ) ( x,'qTx,qT0 << ) ,  
Then, for any , 0t ≥ ( ) ( ) 0tStS q'q ≤≤  hence there 
exists  such that  for any 

. Therefore, the competition installed by the 
above mentioned process among the neurons of  
determines that the outputs of all neurons q’ that 
received values  are inhibited 

in a finite number of stages, that is there exists  
such that 

( ) 0'qt ≥ ( ) 0tS 'q =

( )'qtt ≥

HF

( ) ( x,qTminx,'qT
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> )
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( ) 0tS fin'q ≠  if and only if  
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       ,  ( ) ( ) ( x,qTminx,"qTx,'qT
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==

( ) ( ) 0tStS fin"qfin'q ≠=   
and for any , . 0t ≥ ( ) ( )tStS "q'q =

The local memories of the hidden neurons are 
determined in a supervised way by adaptive learning 
algorithms using a learning sequence 

( )( 1n/X,S nn ≥= )Λ . The recurrent relations for 
( ) Hnq,n Fq,1n,q,f ∈≥ξ  are derived in terms of the 

particular relationships of . For 

instance, if 

( )( ) (( y,xg,qu nn ))
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( )
n

q,
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n
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∑
==

Λδ
 and 

( ) ( y,xy,xgn )δ=  then we get the following 
relations. Let 1n1n q ++ =Λ . Then 
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For  we get, 1nqq +≠
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If ( ) 0q =ξ  or , then ( ) 0qun =
( ) ( ) 0qq 1nn == +ξξ . If ( ) ( ) 0qu,0q n ≠≠ξ , then, 

denoting by ( ) ( )q
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