Detection of Fake Profiles in Social Media - Literature Review

Aleksei Romanov, Alexander Semenov, Oleksiy Mazhelis, Jari Veijalainen

Abstract

False identities play an important role in advanced persisted threats and are also involved in other malicious activities. The present article focuses on the literature review of the state-of-the-art research aimed at detecting fake profiles in social media. The approaches to detecting fake social media accounts can be classified into the approaches aimed on analysing individual accounts, and the approaches capturing the coordinated activities spanning a large group of accounts. The article sheds light on the role of fake identities in advanced persistent threats and covers the mentioned approaches of detecting fake social media accounts.

References

  1. Adikari, S., Dutta, K., 2014. Identifying Fake Profiles in Linkedin, in: PACIS 2014 Proceedings. Presented at the Pacific Asia Conference on Information Systems.
  2. Beutel, A., Xu, W., Guruswami, V., Palow, C., Faloutsos, C., 2013. CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks, in: Proceedings of the 22Nd International Conference on World Wide Web, WWW 7813. ACM, New York, NY, USA, pp. 119-130. doi:10.1145/2488388.2488400.
  3. Boshmaf, Y., Logothetis, D., Siganos, G., Lería, J., Lorenzo, J., Ripeanu, M., Beznosov, K., Halawa, H., 2016. Íntegro: Leveraging victim prediction for robust fake account detection in large scale OSNs. Comput. Secur. 61, 142-168. doi:10.1016/j.cose.2016.05.005.
  4. Cao, Y., Li, W., Zhang, J., 2011. Real-time traffic information collecting and monitoring system based on the internet of things, in: 2011 6th International Conference on Pervasive Computing and Applications. Presented at the 2011 6th International Conference on Pervasive Computing and Applications, pp. 45-49. doi:10.1109/ ICPCA.2011.6106477.
  5. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S., 2010. Who is Tweeting on Twitter: Human, Bot, or Cyborg?, in: Proceedings of the 26th Annual Computer Security Applications Conference, ACSAC 7810. ACM, New York, NY, USA, pp. 21-30. doi:10.1145/ 1920261.1920265.
  6. Conti, M., Poovendran, R., Secchiero, M., 2012. FakeBook: Detecting Fake Profiles in On-Line Social Networks, in: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), ASONAM 7812. IEEE Computer Society, Washington, DC, USA, pp. 1071- 1078. doi:10.1109/ASONAM.2012.185.
  7. De Cristofaro, E., Friedman, A., Jourjon, G., Kaafar, M.A., Shafiq, M.Z., 2014. Paying for Likes?: Understanding Facebook Like Fraud Using Honeypots, in: Proceedings of the 2014 Conference on Internet Measurement Conference, IMC 7814. ACM, New York, NY, USA, pp. 129-136. doi:10.1145/2663716.2663729.
  8. Douceur, J.R., 2002. The Sybil Attack, in: Revised Papers from the First International Workshop on Peer-to-Peer Systems, IPTPS 7801. Springer-Verlag, London, UK, UK, pp. 251-260.
  9. Egele, M., Stringhini, G., Kruegel, C., Vigna, G., 2015. Towards Detecting Compromised Accounts on Social Networks. IEEE Trans. Dependable Secure Comput. PP, 1-1. doi:10.1109/TDSC.2015.2479616.
  10. Facebook, inc., 2014. Facebook annual report https://www.sec.gov/Archives/edgar/data/1326801/00 0132680115000006/fb-12312014x10k.htm.
  11. Farooqi, S., Ikram, M., Irfan, G., De Cristofaro, E., Friedman, A., Jourjon, G., Kaafar, M.A., Shafiq, M.Z., Zaffar, F., 2015. Characterizing Seller-Driven BlackHat Marketplaces. ArXiv150501637 Cs.
  12. Fayazi, A., Lee, K., Caverlee, J., Squicciarini, A., 2015. Uncovering Crowdsourced Manipulation of Online Reviews, in: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 7815. ACM, New York, NY, USA, pp. 233-242. doi:10.1145/2766462.2767742.
  13. Jiang, M., Cui, P., Faloutsos, C., 2016. Suspicious Behavior Detection: Current Trends and Future Directions. IEEE Intell. Syst. 31, 31-39. doi:10.1109/MIS.2016.5.
  14. Kaplan, A.M., Haenlein, M., 2010. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 53, 59-68. doi:10.1016/j.bushor.2009.09.003.
  15. Kietzmann, J.H., Hermkens, K., McCarthy, I.P., Silvestre, B.S., 2011. Social media? Get serious! Understanding the functional building blocks of social media. Bus. Horiz., SPECIAL ISSUE: SOCIAL MEDIA 54, 241- 251. doi:10.1016/j.bushor.2011.01.005.
  16. Kontaxis, G., Polakis, I., Ioannidis, S., Markatos, E.P., 2011. Detecting social network profile cloning, in: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). Presented at the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 295-300. doi:10.1109/PERCOMW.2011.5766886.
  17. Krombholz, K., Hobel, H., Huber, M., Weippl, E., 2015. Advanced Social Engineering Attacks. J Inf Secur Appl 22, 113-122. doi:10.1016/j.jisa.2014.09.005.
  18. Krombholz, K., Merkl, D., Weippl, E., 2012. Fake identities in social media: A case study on the sustainability of the Facebook business model. J. Serv. Sci. Res. 4, 175-212. doi:10.1007/s12927-012-0008-z.
  19. Lee, K., Caverlee, J., Webb, S., 2010. Uncovering Social Spammers: Social Honeypots + Machine Learning, in: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 7810. ACM, New York, NY, USA, pp. 435-442. doi:10.1145/1835449. 1835522.
  20. Lee, K., Webb, S., Ge, H., 2015. Characterizing and automatically detecting crowdturfing in Fiverr and Twitter. Soc. Netw. Anal. Min. 5, 2. doi:10.1007/s13278-014-0241-1.
  21. Lee, K., Webb, S., Ge, H., 2014. The Dark Side of MicroTask Marketplaces: Characterizing Fiverr and Automatically Detecting Crowdturfing. ArXiv14060574 Phys.
  22. Nazir, A., Raza, S., Chuah, C.-N., Schipper, B., 2010. Ghostbusting Facebook: Detecting and Characterizing Phantom Profiles in Online Social Gaming Applications, in: Proceedings of the 3rd Wonference on Online Social Networks, WOSN'10. USENIX Association, Berkeley, CA, USA, pp. 1-1.
  23. Song, J., Lee, S., Kim, J., 2015. CrowdTarget: Targetbased Detection of Crowdturfing in Online Social Networks, in: Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security, CCS 7815. ACM, New York, NY, USA, pp. 793-804. doi:10.1145/2810103.2813661.
  24. Stringhini, G., Kruegel, C., Vigna, G., 2010. Detecting Spammers on Social Networks, in: Proceedings of the 26th Annual Computer Security Applications Conference, ACSAC 7810. ACM, New York, NY, USA, pp. 1-9. doi:10.1145/1920261.1920263.
  25. Stringhini, G., Wang, G., Egele, M., Kruegel, C., Vigna, G., Zheng, H., Zhao, B.Y., 2013. Follow the Green: Growth and Dynamics in Twitter Follower Markets, in: Proceedings of the 2013 Conference on Internet Measurement Conference, IMC 7813. ACM, New York, NY, USA, pp. 163-176. doi:10.1145/2504730. 2504731.
  26. Thomas, K., McCoy, D., Grier, C., Kolcz, A., Paxson, V., 2013. Trafficking Fraudulent Accounts: The Role of the Underground Market in Twitter Spam and Abuse, in: Proceedings of the 22Nd USENIX Conference on Security, SEC'13. USENIX Association, Berkeley, CA, USA, pp. 195-210.
  27. Viswanath, B., Bashir, M.A., Crovella, M., Guha, S., Gummadi, K.P., Krishnamurthy, B., Mislove, A., 2014. Towards Detecting Anomalous User Behavior in Online Social Networks, in: 23rd USENIX Security Symposium (USENIX Security 14). USENIX Association, San Diego, CA, pp. 223-238.
  28. Wang, G., Wang, T., Zhang, H., Zhao, B.Y., 2014. Man vs. Machine: Practical Adversarial Detection of Malicious Crowdsourcing Workers, in: Proceedings of the 23rd USENIX Conference on Security Symposium, SEC'14. USENIX Association, Berkeley, CA, USA, pp. 239-254.
  29. Wang, G., Wilson, C., Zhao, X., Zhu, Y., Mohanlal, M., Zheng, H., Zhao, B.Y., 2012. Serf and Turf: Crowdturfing for Fun and Profit, in: Proceedings of the 21st International Conference on World Wide Web, WWW 7812. ACM, New York, NY, USA, pp. 679-688. doi:10.1145/2187836.2187928.
  30. Yang, C., Harkreader, R.C., Gu, G., 2011. Die Free or Live Hard? Empirical Evaluation and New Design for Fighting Evolving Twitter Spammers, in: Proceedings of the 14th International Conference on Recent Advances in Intrusion Detection, RAID'11. SpringerVerlag, Berlin, Heidelberg, pp. 318-337. doi:10.1007/978-3-642-23644-0_17.
  31. Yang, Z., Wilson, C., Wang, X., Gao, T., Zhao, B.Y., Dai, Y., 2011. Uncovering Social Network Sybils in the Wild, in: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC 7811. ACM, New York, NY, USA, pp. 259-268. doi:10.1145/2068816.2068841.
  32. Zang, W., Zhang, P., Wang, X., Shi, J., Guo, L., 2013. Detecting Sybil Nodes in Anonymous Communication Systems. Procedia Comput. Sci., First International Conference on Information Technology and Quantitative Management 17, 861-869. doi:10.1016/ j.procs.2013.05.110.
Download


Paper Citation


in Harvard Style

Romanov A., Semenov A., Mazhelis O. and Veijalainen J. (2017). Detection of Fake Profiles in Social Media - Literature Review . In Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-758-246-2, pages 363-369. DOI: 10.5220/0006362103630369


in Bibtex Style

@conference{webist17,
author={Aleksei Romanov and Alexander Semenov and Oleksiy Mazhelis and Jari Veijalainen},
title={Detection of Fake Profiles in Social Media - Literature Review},
booktitle={Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2017},
pages={363-369},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006362103630369},
isbn={978-989-758-246-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Detection of Fake Profiles in Social Media - Literature Review
SN - 978-989-758-246-2
AU - Romanov A.
AU - Semenov A.
AU - Mazhelis O.
AU - Veijalainen J.
PY - 2017
SP - 363
EP - 369
DO - 10.5220/0006362103630369