Probing Complexity with Epidemics: A New Reactive Immunization Strategy

E. Alfinito, M. Beccaria, A. Fachechi, G. Macorini

Abstract

Epidemic evolution on complex networks strongly depends on their topology and the infection dynamical properties, as highly connected nodes and individuals exposed to the contagion have competing roles in the disease spreading. In this spirit, we propose a new immunization strategy exploiting the knowledge of network geometry and dynamical information about the spreading infection. The flexibility and effectiveness of the proposed scheme are successfully tested with numerical simulations on a wide set of complex networks.

References

  1. and Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of modern physics, 74(1):47.
  2. Alfinito, E., Beccaria, M., and Macorini, G. (2016). Critical behavior in a stochastic model of vector mediated epidemics. Scientific reports , 6.
  3. Altarelli, F., Braunstein, A., Dall'Asta, L., Wakeling, J. R., and Zecchina, R. (2014). Containing epidemic outbreaks by message-passing techniques. Physical Review X, 4(2):021024.
  4. Bornholdt, S. and Schuster, H. G. (2006). Handbook of graphs and networks: from the genome to the internet. John Wiley & Sons.
  5. Cohen, R., Havlin, S., and Ben-Avraham, D. (2003). Efficient immunization strategies for computer networks and populations. Physical review letters, 91(24):247901.
  6. Colizza, V., Flammini, A., Serrano, M. A., and Vespignani, A. (2006). Detecting rich-club ordering in complex networks. Nature physics, 2(2):110-115.
  7. Ferguson, J. M., Langebrake, J. B., Cannataro, V. L., Garcia, A. J., Hamman, E. A., Martcheva, M., and Osenberg, C. W. (2014). Optimal sampling strategies for detecting zoonotic disease epidemics. PLOS Computational Biology, 10(6):1-13.
  8. Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. Wiley, New York.
  9. Hu, K. and Tang, Y. (2012). Immunization for complex network based on the effective degree of vertex. International Journal of Modern Physics B, 26(06):1250052.
  10. (2001). Lethality and centrality in protein networks.
  11. Nature, 411(6833):41-42.
  12. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804):651-654.
  13. Joyce, K. E., Laurienti, P. J., Burdette, J. H., and Hayasaka, S. (2010). A new measure of centrality for brain networks. PLoS One, 5(8):e12200.
  14. Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 115-772, pages 700-721. The Royal Society.
  15. Liu, S., Perra, N., Karsai, M., and Vespignani, A. (2014). Controlling contagion processes in activity driven networks. Physical review letters, 112(11):118702.
  16. May, R. M. and Anderson, R. M. (1979). biology of infectious diseases: Part ii. 280(5722):455-461.
  17. Nian, F. and Wang, X. (2010). Efficient immunization strategies on complex networks. Journal of theoretical biology, 264(1):77-83.
  18. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A. (2015). Epidemic processes in complex networks. Rev. Mod. Phys., 87:925.
  19. Pastor-Satorras, R. and Vespignani, A. (2002). Immunization of complex networks. Physical Review E, 65(3):036104.
  20. Pereira, T. and Young, L.-S. (2015). Control of epidemics on complex networks: Effectiveness of delayed isolation. Physical Review E, 92(2):022822.
  21. Perra, N., Gonc¸alves, B., Pastor-Satorras, R., and Vespignani, A. (2012). Activity driven modeling of time varying networks. Scientific reports , 2.
  22. Rhodes, C. and Hollingsworth, T. (2009). Variational data assimilation with epidemic models. Journal of Theoretical Biology, 258(4):591 - 602.
  23. Ruan, Z., Tang, M., and Liu, Z. (2012). Epidemic spreading with information-driven vaccination. Physical Review E, 86(3):036117.
  24. Seidman, S. (1983). Network structure and minimum degree. Social Networks, 5(3):269-287.
  25. Stauffer, A. O. and Barbosa, V. C. (2006). Dissemination strategy for immunizing scale-free networks. Physical Review E, 74(5):056105.
  26. Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684):440- 442.
  27. Yan, S., Tang, S., Pei, S., Jiang, S., and Zheng, Z. (2014). Dynamical immunization strategy for seasonal epidemics. Physical Review E, 90(2):022808.
Download


Paper Citation


in Harvard Style

Alfinito E., Beccaria M., Fachechi A. and Macorini G. (2017). Probing Complexity with Epidemics: A New Reactive Immunization Strategy . In Proceedings of the 2nd International Conference on Complexity, Future Information Systems and Risk - Volume 1: COMPLEXIS, ISBN 978-989-758-244-8, pages 116-123. DOI: 10.5220/0006361301160123


in Bibtex Style

@conference{complexis17,
author={E. Alfinito and M. Beccaria and A. Fachechi and G. Macorini},
title={Probing Complexity with Epidemics: A New Reactive Immunization Strategy},
booktitle={Proceedings of the 2nd International Conference on Complexity, Future Information Systems and Risk - Volume 1: COMPLEXIS,},
year={2017},
pages={116-123},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006361301160123},
isbn={978-989-758-244-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Complexity, Future Information Systems and Risk - Volume 1: COMPLEXIS,
TI - Probing Complexity with Epidemics: A New Reactive Immunization Strategy
SN - 978-989-758-244-8
AU - Alfinito E.
AU - Beccaria M.
AU - Fachechi A.
AU - Macorini G.
PY - 2017
SP - 116
EP - 123
DO - 10.5220/0006361301160123