Taming the Evolution of Big Data and its Technologies in BigGIS - A Conceptual Architectural Framework for Spatio-Temporal Analytics at Scale

Patrick Wiener, Viliam Simko, Jens Nimis

Abstract

In the era of spatio-temporal big data, geographic information systems have to deal with a myriad of big data induced challenges such as scalability, flexibility or fault-tolerance. Furthermore, the rapid evolution of the underlying, occasionally competing big data ecosystems inevitably needs to be taken into account from the early system design phase. In order to generate valuable knowledge from spatio-temporal big data, a holistic approach manifested in an appropriate architectural design is necessary, which is a non-trivial task with regards to the tremendous design space. Therefore, we present the conceptual architectural framework of BigGIS, a predictive and prescriptive spatio-temporal analytics platform, that integrates big data analytics, semantic web technologies and visual analytics methodologies in our continuous refinement model.

References

  1. Apache Foundation (2016). Apache NiFi Documentation. https://nifi.apache.org/docs.html.
  2. Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., K├Âtter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., and Wiswedel, B. (2007). KNIME: The Konstanz Information Miner. In Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer.
  3. Buschmann, F., Henney, K., and Schmidt, D. C. (2007). Pattern-Oriented Software Architecture - A Pattern Language for Distributed Computing. John Wiley & Sons, New York.
  4. Crossland, M. D., Wynne, B. E., and Perkins, W. C. (1995). Spatial Decision Support Systems: An Overview of Technology and a Test of Efcfiacy. Decis. Support Syst., 14(3):219-235.
  5. Eclipse Foundation (2016). GeoTrellis Documentation. http://geotrellis.io/documentation.html.
  6. Emanuele, R. (2016). GeoTrellis landsat tutorial project. https://github.com/geotrellis/geotrellis-landsattutorial. (2016). ArcGIS and Big Data.
  7. Guazzelli, A., Zeller, M., Lin, W., and Williams, G. (2009). PMML: An open standard for sharing models. The R Journal, 1(May):60-65.
  8. Kreps, J. (2014). Questioning the Lambda Architecture. https://www.oreilly.com/ideas/questioning-thelambda-architecture.
  9. Marz, N. and Warren, J. (2013). Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications.
  10. OGC (2013). Big Processing of Geospatial Data. http://www.opengeospatial.org/blog/1866.
  11. Ord, J. K. and Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27(4):286-306.
  12. Peng, Y. and Liangcun, J. (2014). BigGIS: How big data can shape next-generation GIS. In 3rd Int. Conf. on AgroGeoinformatics (Agro-Geoinformatics 2014), pages 1-6. IEEE.
  13. Riemer, D., Kaulfersch, F., Hutmacher, R., and Stojanovic, L. (2015). Streampipes: Solving the challenge with semantic stream processing pipelines. In Proc. of the 9th ACM Int. Conf. on Distributed Event-Based Systems, DEBS 7815, pages 330-331, New York, NY, USA. ACM.
  14. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B. C., Ellis, G., and Keim, D. A. (2014). Knowledge Generation Model for Visual Analytics. IEEE Transactions on Visualization and Computer Graphics, 20(12):1604-1613.
  15. Thakur, G. S., Bhaduri, B. L., Piburn, J. O., Sims, K. M., Stewart, R. N., and Urban, M. L. (2015). PlanetSense: A Real-time Streaming and Spatio-temporal Analytics Platform for Gathering Geo-spatial Intelligence from Open Source Data. In Proc. of the 23rd SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, pages 11:1-11:4. ACM.
  16. Tomlin, C. (1990). Geographic information systems and cartographic modeling. Prentice Hall series in geographic information science. Prentice Hall.
  17. Wiener, P., Stein, M., Seebacher, D., Bruns, J., Frank, M., Simko, V., Zander, S., and Nimis, J. (2016). BigGIS: A Continuous Refinement Approach to Master Heterogeneity and Uncertainty in Spatio-Temporal Big Data (Vision Paper). In 24th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems (ACM SIGSPATIAL 2016).
Download


Paper Citation


in Harvard Style

Wiener P., Simko V. and Nimis J. (2017). Taming the Evolution of Big Data and its Technologies in BigGIS - A Conceptual Architectural Framework for Spatio-Temporal Analytics at Scale . In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM, ISBN 978-989-758-252-3, pages 90-101. DOI: 10.5220/0006334200900101


in Bibtex Style

@conference{gistam17,
author={Patrick Wiener and Viliam Simko and Jens Nimis},
title={Taming the Evolution of Big Data and its Technologies in BigGIS - A Conceptual Architectural Framework for Spatio-Temporal Analytics at Scale},
booktitle={Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,},
year={2017},
pages={90-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006334200900101},
isbn={978-989-758-252-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,
TI - Taming the Evolution of Big Data and its Technologies in BigGIS - A Conceptual Architectural Framework for Spatio-Temporal Analytics at Scale
SN - 978-989-758-252-3
AU - Wiener P.
AU - Simko V.
AU - Nimis J.
PY - 2017
SP - 90
EP - 101
DO - 10.5220/0006334200900101