Towards a Data-oriented Optimization of Manufacturing Processes - A Real-Time Architecture for the Order Processing as a Basis for Data Analytics Methods

Matthias Blum, Guenther Schuh

Abstract

Real-time data analytics methods are key elements to overcome the currently rigid planning and improve manufacturing processes by analysing historical data, detecting patterns and deriving measures to counteract the issues. The key element to improve, assist and optimize the process flow builds a virtual representation of a product on the shop-floor - called the digital twin or digital shadow. Using the collected data requires a high data quality, therefore measures to verify the correctness of the data are needed. Based on the described issues the paper presents a real-time reference architecture for the order processing. This reference architecture consists of different layers and integrates real-time data from different sources as well as measures to improve the data quality. Based on this reference architecture, deviations between plan data and feedback data can be measured in real-time and countermeasures to reschedule operations can be applied.

References

  1. Abraham A, Kovalev S, Tarassov V, Snášel V (eds) (2016) Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI'16). Advances in Intelligent Systems and Computing. Springer International Publishing, Cham
  2. Bauer K, Diegener B, Herfs W, Löwen U, Stumpf V (2013) Umsetzungsempfehlungen für das ZukunftsprojektIndustrie 4.0: Abschlussbericht des Arbeitskreises Industrie 4.0. Accessed 22 September 2016
  3. Blue Yonder Platform as a service. https://www.blueyonder.com/de/loesungen/replenishment-optimization. Accessed 12 December 2016
  4. Blum M, Schuh G (2016) Design of a Data Structure for the Order Processing as a Basis for Data Analytics Methods. In: Proceedings of Portland International Conference on Management of Engineering & Technology (PICMET), Honolulu, Hawaii
  5. Christopher M (2016) Logistics & supply chain management, Fifth Edition. Always learning. Pearson Education, Harlow, England, New York
  6. ElMaraghy W, ElMaraghy H, Tomiyama T, Monostori L (2012) Complexity in engineering design and manufacturing. CIRP Annals - Manufacturing Technology 61(2):793-814. doi: 10.1016/j.cirp.2012.05.001
  7. FAIR ISAAC Cooperation (2013) Business Intelligence and Big Data Analystics: Speeding the Cycle from Insights to Action Four Steps to More Profitable Customer Engangement. http://docplayer.net/3343658- Business-intelligence-and-big-data-analytics-speedingthe-cycle-from-insights-to-action-foursteps-to-moreprofitable-customer-engagement.html
  8. Gröger C, Kassner L, Hoos E, Königsberger J, Kiefer C, Silcher S, Mitschang B (2016) The Data-driven Factory - Leveraging Big Industrial Data for Agile, Learning and Human-centric Manufacturing. In: 18th International Conference on Enterprise Information Systems, pp 40-52
  9. Groten M, Kraut A, Pause D, Starick C, Ihne M, Enriquez M (2015) Digitalisierung der Supply-Chain. Zeitschrift für wirtschaftlichen Fabrikbetrieb 110(12):2-4
  10. Guo ZX, Ngai E, Yang C, Liang X (2015) An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. International Journal of Production Economics 159:16-28. doi: 10.1016/j.ijpe.2014.09.004
  11. IBM Descriptive, predictive, prescriptive: Transforming asset and facilities management with analytics. https://static.ibmserviceengage.com/TIW14162USEN. PDF. Accessed 12 December 2016
  12. Jeschke S, Brecher C, Song H, Rawat DB (eds) (2017) Industrial Internet of Things. Springer Series in Wireless Technology. Springer International Publishing, Cham
  13. Kagermann H, Wahlster W, Helbig J (2013) Recommendations for Recommmendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry
  14. Kassner L, Gröger C, Mitschang B, Westkämper E (2015) Product Life Cycle Analytics - Next Generation Data Analytics on Structured and Unstructured Data. Procedia CIRP 33:35-40. doi: 10.1016/j.procir.2015.06.008
  15. Luo H, Fang J, Huang GQ (2015) Real-time scheduling for hybrid flowshop in ubiquitous manufacturing environment. Computers & Industrial Engineering 84:12-23. doi: 10.1016/j.cie.2014.09.019
  16. Monostori L (2014) Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP 17:9-13. doi: 10.1016/j.procir.2014.03.115
  17. Sherman R (2015) Business intelligence guidebook: From data integration to analytics. Elsevier, Amsterdam
  18. Stich V, Hering N (2015) Daten und Software als entscheidender Wettbewerbsfaktor. industrie 4.0 magazin 1:9-13
  19. Terradata Business Analytics Challenges: Solved. http://www.teradata.de/business-analyticssolutions/?LangType=1031&LangSelect=true. Accessed 12 December 2016
  20. VDI 2815 Terms of production engineering and control. VDI Verein Deutscher Ingenieure, Berlin
  21. Westkämper E, Decker M (2006) Einführung in die Organisation der Produktion. Springer-Lehrbuch. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg
  22. Yang Z, Zhang P, Chen L (2016) RFID-enabled indoor positioning method for a real-time manufacturing execution system using OS-ELM. Neurocomputing 174:121-133. doi: 10.1016/j.neucom.2015.05.120
  23. Zhang Y, Xu J, Sun S, Yang T (2015) Real-time information driven intelligent navigation method of assembly station in unpaced lines. Computers & Industrial Engineering 84:91-100. doi: 10.1016/j.cie.2014.09.007
  24. Zhang Y, Zhang G, Wang J, Sun S, Si S, Yang T (2014) Real-time information capturing and integration framework of the internet of manufacturing things. International Journal of Computer Integrated Manufacturing 28(8):811-822. doi: 10.1080/0951192X.2014.900874
  25. Zhong RY, Huang GQ, Lan S, Dai QY, Zhang T, Xu C (2015) A two-level advanced production planning and scheduling model for RFID-enabled ubiquitous manufacturing. Advanced Engineering Informatics 29(4):799-812. doi: 10.1016/j.aei.2015.01.002
Download


Paper Citation


in Harvard Style

Blum M. and Schuh G. (2017). Towards a Data-oriented Optimization of Manufacturing Processes - A Real-Time Architecture for the Order Processing as a Basis for Data Analytics Methods . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 257-264. DOI: 10.5220/0006326002570264


in Bibtex Style

@conference{iceis17,
author={Matthias Blum and Guenther Schuh},
title={Towards a Data-oriented Optimization of Manufacturing Processes - A Real-Time Architecture for the Order Processing as a Basis for Data Analytics Methods},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2017},
pages={257-264},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006326002570264},
isbn={978-989-758-247-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Towards a Data-oriented Optimization of Manufacturing Processes - A Real-Time Architecture for the Order Processing as a Basis for Data Analytics Methods
SN - 978-989-758-247-9
AU - Blum M.
AU - Schuh G.
PY - 2017
SP - 257
EP - 264
DO - 10.5220/0006326002570264