The Use of Time Dimension in Recommender Systems for Learning

Eduardo José de Borba, Isabela Gasparini, Daniel Lichtnow

Abstract

When the amount of learning objects is huge, especially in the e-learning context, users could suffer cognitive overload. That way, users cannot find useful items and might feel lost in the environment. Recommender systems are tools that suggest items to users that best match their interests and needs. However, traditional recommender systems are not enough for learning, because this domain needs more personalization for each user profile and context. For this purpose, this work investigates Time-Aware Recommender Systems (Context-aware Recommender Systems that uses time dimension) for learning. Based on a set of categories (defined in previous works) of how time is used in Recommender Systems regardless of their domain, scenarios were defined that help illustrate and explain how each category could be applied in learning domain. As a result, a Recommender System for learning is proposed. It combines Content-Based and Collaborative Filtering approaches in a Hybrid algorithm that considers time in Pre-Filtering and Post-Filtering phases.

References

  1. Adomavicius, G.; Tuzhilin, A. 2005. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, vol. 17, no. 6.
  2. Adomavicius, G; Tuzhilin, A. 2011. Context-aware Recommender Systems. In: Ricci, F. (Org.); Rokach, L. (Org.); Shapira, B. (Org.); Kantor, P. B. (Org.). Recommender System: Handbook. Springer.
  3. Beel, J.; Breitinger, C.; Langer, S.; Lommatzsch, A.; Gipp, B. 2016. Towards reproducibility in recommendersystems research. User Model User-Adap Inter, 26:69- 101.
  4. Borba, E. J.; Gasparini, I.; Lichtnow, D. 2017. TimeAware Recommender Systems: A Systematic Mapping. HCI International, Springer. (to appear).
  5. Brusilovsky, P. Methods and Techniques of Adaptive Hypermedia. 1998. Adaptive Hypertext and Hypermedia, Kluwer Academic, Publishers, p. 1-43.
  6. Burke, R. D. 2002. Hybrid Recommender Systems: survey and experiments. UserModel UserAdapt Interact., v .12, n.4, p. 331-370.
  7. Campos, P. G.; Díez, F.; Cantador, I. 2014. Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model User-Adapt Inter, vol. 24, pp. 67-119.
  8. Chen, G.; Kotz, D. 2000. A Survey of Context-Aware Mobile Computing Research. Technical report.
  9. Dey, A.K. 2001. Understanding and using context. Ubiquitous Comput, vol. 5, no. 1, pp. 4-7.
  10. IEEE 2002. Draft Standard for Learning Object Metadata, Available at: http://grouper.ieee.org/groups/ltsc/wg12/20020612- Final-LOM-Draft.html..
  11. Ferfernig, A.; Friederich, G.; Jannach, D.; Zanker, M. 2011. Developing Constraint-based Recommenders. In: Ricci, F. (Org.); Rokach, L. (Org.); Shapira, B. (Org.); Kantor, P. B. (Org.). Recommender System: Handbook. Springer.
  12. Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich, G. 2011. Recommender Systems: An Introduction. New York, USA: Cambridge University Press.
  13. Koren, Y. 2009. The bellkor solution to the netflix grand prize. Netflix prize documentation.
  14. Koren, Y; Bell, R. 2011. Advances in Collaborative Filtering. In: Ricci, F. (Org.); Rokach, L. (Org.); Shapira, B. (Org.); Kantor, P. B. (Org.). Recommender System: Handbook. Springer.
  15. Lops, P.; Gemmis, M. de; Semeraro, G. 2011. ContentBased Recommender System: State of the Art and Trends. In: Ricci, F. (Org.); Rokach, L. (Org.); Shapira, B. (Org.); Kantor, P. B. (Org.). Recommender System: Handbook. Springer.
  16. Merriam-Webster. Last access: 2016. Time. Available at: http://www.merriam-webster.com/dictionary/time,
  17. Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. 2008. Systematic Mapping Studies in Software Engineering. 12th International Conference on Evaluation and Assessment in Software Engineering, vol. 17, no. 1.
  18. Ricci, F.; Rokach, L.; Shapira, B. 2011. Introduction to Recommender System Handbook. In: Ricci, F.; Rokach, L.; Shapira, B.; Kantor, P. B. Recommender Systems: Handbook. Springer.
  19. Schmidt, A.; Beigl, M.; Gellersen, G. H. 1999. There is More to Context than Location. Computers and Graphics, vol. 23, no. 6, pp. 893-901.
  20. Schilit, B.; Adams, N.; Want, R. 1994. Context-Aware Computing Applications. Proc. First Workshop Mobile Computing Systems and Applications (WMCSA 7894), pp. 85-90.
  21. Verbert, K.; Manouselis, N.; Ochoa, X.; Wolpers, M.; Drachsler, H.; Bosnic, I.; Duval, E. 2012. ContextAware Recommender Systems for Learning: A Survey and Future Challenges. IEEE Transactions on Learning Technologies, vol. 5, n. 4.
  22. Zimmermann, A.; Lorenz, A.; Oppermann, R. 2007. An Operational Definition of Context. Proc. Sixth Int'l and Interdisciplinary Conf. Modeling and Using Context (CONTEXT 7807), pp. 558-571.
Download


Paper Citation


in Harvard Style

José de Borba E., Gasparini I. and Lichtnow D. (2017). The Use of Time Dimension in Recommender Systems for Learning . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-248-6, pages 600-609. DOI: 10.5220/0006312606000609


in Bibtex Style

@conference{iceis17,
author={Eduardo José de Borba and Isabela Gasparini and Daniel Lichtnow},
title={The Use of Time Dimension in Recommender Systems for Learning},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2017},
pages={600-609},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006312606000609},
isbn={978-989-758-248-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - The Use of Time Dimension in Recommender Systems for Learning
SN - 978-989-758-248-6
AU - José de Borba E.
AU - Gasparini I.
AU - Lichtnow D.
PY - 2017
SP - 600
EP - 609
DO - 10.5220/0006312606000609