Connected Closet - A Semantically Enriched Mobile Recommender System for Smart Closets

Anders Kolstad, Özlem Özgöbek, Jon Atle Gulla, Simon Litlehamar

Abstract

A common problem for many people is deciding on an outfit from a vastly overloaded wardrobe. In this paper, we present Connected Closet, a semantically enriched Internet of Things solution of a smart closet with a corresponding mobile application for recommending daily outfits and suggesting garments for recycling or donation. This paper describes the whole design and architecture for the system, including the physical closet, the recommender algorithms, the mobile application, and the backend comprising of microservices implemented using container technology. We show how users can benefit from the system by supporting them in organizing their wardrobe, and receiving daily personalized outfit suggestions. Moreover, with the system’s recycling suggestions, the system can be beneficial for the sustainability of the environment and the economy.

References

  1. Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data-the story so far. Semantic Services, Interoperability and Web Applications: Emerging Concepts, pages 205-227.
  2. Bobadilla, J., Ortega, F., Hernando, A., and Gutirrez, A. (2013). Recommender systems survey. KnowledgeBased Systems, 46:109 - 132.
  3. Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog Computing and Its Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC 7812, pages 13-16, New York, NY, USA. ACM.
  4. Chavan RB (2014). Environmental Sustainability through Textile Recycling. Journal of Textile Science & Engineering, pages 1-6.
  5. Di Noia, T., Mirizzi, R., Ostuni, V. C., Romito, D., and Zanker, M. (2012). Linked Open Data to Support Content-based Recommender Systems. In Proceedings of the 8th International Conference on Semantic Systems, I-SEMANTICS 7812, pages 1-8, New York, NY, USA. ACM.
  6. Figueroa, C., Vagliano, I., Rocha, O. R., and Morisio, M. (2015). A systematic literature review of Linked Data-based recommender systems. Concurrency and Computation: Practice and Experience, 27(17):4659- 4684.
  7. Goh, K. N., Chen, Y. Y., and Lin, E. S. (2011). Developing a smart wardrobe system. In 2011 IEEE Consumer Communications and Networking Conference (CCNC), pages 303-307.
  8. Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7):1645-1660.
  9. Heitmann, B. and Hayes, C. (2010). Using Linked Data to Build Open, Collaborative Recommender Systems. In AAAI spring symposium: linked data meets artificial intelligence, pages 76-81.
  10. Ingvaldsen, J. E., Ozgobek, O., and Gulla, J. A. (2015). Context-aware user-driven news recommendation. In 3rd International Workshop on News Recommendation and Analytics (INRA 2015). Ceur-ws Vol-1542.
  11. Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M., Ramakrishnan, R., and Shahabi, C. (2014). Big Data and Its Technical Challenges. Commun. ACM, 57(7):86-94.
  12. Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender Systems: An Introduction. Cambridge University Press.
  13. Klepp, I. G. and Laitala, K. (2016). Clothing consumption in Norway. Technical report 2, Oslo and Akershus University College, Oslo.
  14. Ling, S., Indrawan, M., and Loke, S. W. (2007). RFID-Based User Profiling of Fashion Preferences: Blueprint for a Smart Wardrobe. Int. J. Internet Protoc. Technol., 2(3/4):153-164.
  15. Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., and Yan, S. (2012). Hi, Magic Closet, Tell Me What to Wear! In Proceedings of the 20th ACM International Conference on Multimedia, MM 7812, pages 619-628, New York, NY, USA. ACM.
  16. Pruit, J. C. (2015). Getting Dressed. Popular Culture as Everyday Life, page 155.
  17. Schaad, P., Basler, S., Medini, M., Wissler, I., Brkle, T., and Lehmann, M. (2016). The Intelligent Wardrobe . Studies in Health Technology and Informatics, 225:213-217.
  18. Tomeo, P., Fernndez-Tobas, I., Di Noia, T., and Cantador, I. (2016). Exploiting Linked Open Data in Cold-start Recommendations with Positive-only Feedback. In Proceedings of the 4th Spanish Conference on Information Retrieval, CERI 7816, pages 11:1-11:8, New York, NY, USA. ACM.
  19. Toney, A. P., Thomas, B. H., and Marais, W. (2006). Managing Smart Garments. In 2006 10th IEEE International Symposium on Wearable Computers, pages 91- 94.
Download


Paper Citation


in Harvard Style

Kolstad A., Özgöbek Ö., Gulla J. and Litlehamar S. (2017). Connected Closet - A Semantically Enriched Mobile Recommender System for Smart Closets . In Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-758-246-2, pages 298-305. DOI: 10.5220/0006298002980305


in Bibtex Style

@conference{webist17,
author={Anders Kolstad and Özlem Özgöbek and Jon Atle Gulla and Simon Litlehamar},
title={Connected Closet - A Semantically Enriched Mobile Recommender System for Smart Closets},
booktitle={Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2017},
pages={298-305},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006298002980305},
isbn={978-989-758-246-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Connected Closet - A Semantically Enriched Mobile Recommender System for Smart Closets
SN - 978-989-758-246-2
AU - Kolstad A.
AU - Özgöbek Ö.
AU - Gulla J.
AU - Litlehamar S.
PY - 2017
SP - 298
EP - 305
DO - 10.5220/0006298002980305