CrimeVis: An Interactive Visualization System for Analyzing Crime Data in the State of Rio de Janeiro

Luiz José Schirmer Silva, Sonia Fiol González, Cassio F. P. Almeida, Simone D. J. Barbosa, Hélio Lopes

Abstract

This paper presents an interactive graphic visualization system for analyzing criminal data in the State of Rio de Janeiro, provided by the Public Safety Institute of Rio de Janeiro. The system comprises a set of integrated tools for visualizing and analyzing statistical data on crimes, which makes it possible to extract and infer relevant information regarding government policies on public safety and their effects. The tools allow us to visualize multidimensional data, spatiotemporal data, and multivariate data in an integrated manner using brushing and linking techniques. The paper also presents a case study to evaluate the set of tools we developed.

References

  1. Arietta, S. M., Efros, A. A., Ramamoorthi, R., and Agrawala, M. (2014). City forensics: Using visual elements to predict non-visual city attributes. Visualization and Computer Graphics, IEEE Transactions on, 20(12):2624-2633.
  2. Assunc¸a˜o, R. M., Neves, M. C., Caˆmara, G., and da Costa Freitas, C. (2006). Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. International Journal of Geographical Information Science, 20(7):797-811.
  3. Bach, B., Dragicevic, P., Archambault, D., Hurter, C., and Carpendale, S. (2014). A review of temporal data visualizations based on space-time cube operations. In Eurographics conference on visualization.
  4. Chainey, S., Tompson, L., and Uhlig, S. (2008). The utility of hotspot mapping for predicting spatial patterns of crime. Security Journal, 21(1):4-28.
  5. de Melo, B. M., Guimaraes, J. L., de Castro, A. S., Santos, C. A., Nascimento, D. M., and Del Pino Lino, A. (2015). Criminal data mining: A case studyin criminal observatory tapajós. In Information Systems and Technologies (CISTI), 2015 10th Iberian Conference on, pages 1-6. IEEE.
  6. Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Applied statistics, pages 100-108.
  7. Heer, J. and Shneiderman, B. (2012). Interactive dynamics for visual analysis. Proceedings of the 26th ACM Conference on Hypertext and Social Media, 10(2):30.
  8. Heinrich, J., Luo, Y., Kirkpatrick, A. E., Zhang, H., and Weiskopf, D. (2011). Evaluation of a bundling technique for parallel coordinates. arXiv preprint arXiv:1109.6073.
  9. Heinrich, J. and Weiskopf, D. (2013). State of the art of parallel coordinates. STAR Proceedings of Eurographics, 2013:95-116.
  10. IBGE (2011). Censo demográfico 2010: Caracte rísticas da populac¸a˜o e dos domicílios: resultados do universo. IBGE: Indicadores Sociais.
  11. ISP-RJ (2013). Notas metod ólogicas do instituto de seguranc¸a p ública do rio de janeiro.
  12. Johansson, J., Ljung, P., Jern, M., and Cooper, M. (2005). Revealing structure within clustered parallel coordinates displays. In Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on, pages 125-132. IEEE.
  13. Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis, volume 344. John Wiley & Sons.
  14. Lee, J. H., McDonnell, K. T., Zelenyuk, A., Imre, D., and Mueller, K. (2014). A structure-based distance metric for high-dimensional space exploration with multidimensional scaling. Visualization and Computer Graphics, IEEE Transactions on, 20(3):351-364.
  15. Monteiro, J. and Rocha, R. (2013). Tráfico de drogas e desempenho escolar no rio de janeiro. IBRE - Notas técnicas.
  16. Palmas, G., Bachynskyi, M., Oulasvirta, A., Seidel, H. P., and Weinkauf, T. (2014). An edge-bundling layout for interactive parallel coordinates. In Visualization Symposium (PacificVis), 2014 IEEE Pacifi,cpages 57- 64. IEEE.
  17. Power, D. J. (2014). Using 'Big Data' for analytics and decision support. Journal of Decision Systems, 23(2):222-228.
  18. Rougeux, N., Pry, C., Eder, D., Baker, Paul, B. J., and Velez, J. P. (2012). Crime in chicago: An interactive analysis of crime in chicago's 50 wards.
  19. Zhou, H., Yuan, X., Qu, H., Cui, W., and Chen, B. (2008). Visual clustering in parallel coordinates. In Computer Graphics Forum, volume 27, pages 1047-1054. Wiley Online Library.
Download


Paper Citation


in Harvard Style

Schirmer Silva L., Fiol González S., F. P. Almeida C., D. J. Barbosa S. and Lopes H. (2017). CrimeVis: An Interactive Visualization System for Analyzing Crime Data in the State of Rio de Janeiro . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 193-200. DOI: 10.5220/0006258701930200


in Bibtex Style

@conference{iceis17,
author={Luiz José Schirmer Silva and Sonia Fiol González and Cassio F. P. Almeida and Simone D. J. Barbosa and Hélio Lopes},
title={CrimeVis: An Interactive Visualization System for Analyzing Crime Data in the State of Rio de Janeiro},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2017},
pages={193-200},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006258701930200},
isbn={978-989-758-247-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - CrimeVis: An Interactive Visualization System for Analyzing Crime Data in the State of Rio de Janeiro
SN - 978-989-758-247-9
AU - Schirmer Silva L.
AU - Fiol González S.
AU - F. P. Almeida C.
AU - D. J. Barbosa S.
AU - Lopes H.
PY - 2017
SP - 193
EP - 200
DO - 10.5220/0006258701930200