A Distributed ICT Architecture for Continuous Frequency Control

Christian Giovanelli, Olli Kilkki, Antti Alahäivälä, Ilkka Seilonen, Matti Lehtonen, Valeriy Vyatkin

Abstract

The active participation of consumers in frequency control can mitigate the negative effects of variable renewable generation in a power system. This study aims at designing a distributed information and communication technology architecture for automated demand response. The distributed architecture enables a set of consumers to perform frequency control while being coordinated by an aggregator. Moreover, decision-making algorithms are designed to enable the demand response to participate in frequency control and to provide required reserves. An asynchronous message-oridented middleware is utilized to interface the consumers with the aggregator. In addition, the communication logic between the actors is defined. The distributed architecture is then evaluated through the implementation of a prototype application. Simulated results show that the designed architecture can be utilized for frequency control in automated demand response.

References

  1. AMQP (2016). Amqp web page, https://www.amqp.org/.
  2. Angeli, D. and Kountouriotis, P.-A. (2012). A Stochastic Approach to Dynamic-Demand Refrigerator Control. IEEE Transactions on Control Systems Technology, 20(3):581-592.
  3. de la Torre Rodriguez, M., Scherer, M., Whitley, D., and Reyer, F. (2014). Frequency containment reserves dimensioning and target performance in the European power system. In 2014 IEEE PES General Meeting - Conference & Exposition, pages 1-5. IEEE.
  4. Entsoe (2015). Supporting document for the network code on load-frequency control and reserves.
  5. Fang, X., Misra, S., Xue, G., and Yang, D. (2012). Smart gridthe new and improved power grid: A survey. IEEE communications surveys & tutorials, 14(4):944-980.
  6. Fingrid (2016). Fingrid web http://www.fingrid.fi/en/pages/default.aspx.
  7. Giovanelli, C., Kilkki, O., Seilonen, I., and Vyatkin, V. (2016). Distributed ict architecture and an application for optimized automated demand response. In IEEE PES ISGT Europe 2016. IEEE.
  8. Gkatzikis, L., Koutsopoulos, I., and Salonidis, T. (2013). The role of aggregators in smart grid demand response markets. IEEE Journal on Selected Areas in Communications, 31(7):1247-1257.
  9. Grijalva, S. and Tariq, M. U. (2011). Prosumer-based smart grid architecture enables a flat, sustainable electricity industry. In ISGT 2011, pages 1-6. IEEE.
  10. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., and Hancke, G. P. (2013). A Survey on Smart Grid Potential Applications and Communication Requirements. IEEE Transactions on Industrial Informatics, 9(1):28-42.
  11. Halamay, D. A., Brekken, T. K. A., Simmons, A., and McArthur, S. (2011). Reserve Requirement Impacts of Large-Scale Integration of Wind, Solar, and Ocean Wave Power Generation. IEEE Transactions on Sustainable Energy, 2(3):321-328.
  12. Kilkki, O., Kangasrääsiö, A., Nikkilä, R., Alahäivälä, A., and Seilonen, I. (2014). Agent-based modeling and simulation of a smart grid: A case study of communication effects on frequency control. Engineering Applications of Artificial Intelligence , 33:91-98.
  13. Kim, Y.-J., Thottan, M., Kolesnikov, V., and Lee, W. (2010). A secure decentralized data-centric information infrastructure for smart grid. IEEE Communications Magazine, 48(11):58-65.
  14. Lalor, G., Mullane, A., and O'Malley, M. (2005). Frequency Control and Wind Turbine Technologies. IEEE Transactions on Power Systems, 20(4):1905- 1913.
  15. Mainsfrequency (2012). Mainsfrequency web page, http://www.mainsfrequency.com/services.htm.
  16. Masuta, T. and Yokoyama, A. (2012). Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters. IEEE Transactions on Smart Grid, 3(3):1253-1262.
  17. Megel, O., Mathieu, J. L., and Andersson, G. (2013). Maximizing the potential of energy storage to provide fast frequency control. In IEEE PES ISGT Europe 2013, pages 1-5. IEEE.
  18. Molina-Garcia, A., Bouffard, F., and Kirschen, D. S. (2011). Decentralized demand-side contribution to primary frequency control. IEEE Transactions on Power Systems, 26(1):411-419.
  19. Pourmousavi, S. A. and Nehrir, M. H. (2012). RealTime Central Demand Response for Primary Frequency Regulation in Microgrids. IEEE Transactions on Smart Grid, 3(4):1988-1996.
  20. RabbitMQ (2016). Rabbimq web page, https://www.rabbitmq.com/.
  21. Rodrigues, J. (2013). Service-oriented middleware for smart grid: Principle, infrastructure, and application. IEEE Communications Magazine, 51(1):84-89.
  22. Samarakoon, K., Ekanayake, J., and Jenkins, N. (2012). Investigation of Domestic Load Control to Provide Primary Frequency Response Using Smart Meters. IEEE Transactions on Smart Grid, 3(1):282-292.
  23. Short, J. A., Infield, D. G., and Freris, L. L. (2007). Stabilization of Grid Frequency Through Dynamic Demand Control. IEEE Transactions on Power Systems, 22(3):1284-1293.
  24. Siano, P. (2014). Demand response and smart gridsA survey. Renewable and Sustainable Energy Reviews, 30:461-478.
  25. Stadler, M., Krause, W., Sonnenschein, M., and Vogel, U. (2009). Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices. Environmental Modelling & Software, 24(2):285-295.
  26. Vrettos, E., Oldewurtel, F., Zhu, F., and Andersson, G. (2014). Robust Provision of Frequency Reserves by Office Building Aggregations. IFAC Proceedings Volumes, 47(3):12068-12073.
  27. Xu, Z., Ostergaard, J., and Togeby, M. (2011). Demand as Frequency Controlled Reserve. IEEE Transactions on Power Systems, 26(3):1062-1071.
  28. Yan, Y., Qian, Y., Sharif, H., and Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE communications surveys & tutorials, 15(1):5-20.
  29. Zaballos, A., Vallejo, A., and Selga, J. M. (2011). Heterogeneous communication architecture for the Smart Grid. IEEE Network, 25(5):30-37.
Download


Paper Citation


in Harvard Style

Giovanelli C., Kilkki O., Alahäivälä A., Seilonen I., Lehtonen M. and Vyatkin V. (2017). A Distributed ICT Architecture for Continuous Frequency Control . In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-241-7, pages 135-142. DOI: 10.5220/0006242201350142


in Bibtex Style

@conference{smartgreens17,
author={Christian Giovanelli and Olli Kilkki and Antti Alahäivälä and Ilkka Seilonen and Matti Lehtonen and Valeriy Vyatkin},
title={A Distributed ICT Architecture for Continuous Frequency Control},
booktitle={Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2017},
pages={135-142},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006242201350142},
isbn={978-989-758-241-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - A Distributed ICT Architecture for Continuous Frequency Control
SN - 978-989-758-241-7
AU - Giovanelli C.
AU - Kilkki O.
AU - Alahäivälä A.
AU - Seilonen I.
AU - Lehtonen M.
AU - Vyatkin V.
PY - 2017
SP - 135
EP - 142
DO - 10.5220/0006242201350142