A Study of Virtual Machine Placement Optimization in Data Centers

Stephanie Challita, Fawaz Paraiso, Philippe Merle


In recent years, cloud computing has shown a valuable way for accommodating and providing services over the Internet such that data centers rely increasingly on this platform to host a large amount of applications (web hosting, e-commerce, social networking, etc.). Thus, the utilization of servers in most data centers can be improved by adding virtualization and selecting the most suitable host for each Virtual Machine (VM). The problem of VM placement is an optimization problem aiming for multiple goals. It can be covered through various approaches. Each approach aims to simultaneously reduce power consumption, maximize resource utilization and avoid traffic congestion. The main goal of this literature survey is to provide a better understanding of existing approaches and algorithms that ensure better VM placement in the context of cloud computing and to identify future directions.


  1. Abdelsamea, A., Hemayed, E. E., Eldeeb, H., and Elazhary, H. (2014). Virtual Machine Consolidation Challenges: A Review. International Journal of Innovation and Applied Studies, 8(4):1504.
  2. Ajiro, Y. and Tanaka, A. (2007). Improving Packing Algorithms for Server Consolidation. In Int. CMG Conference, pages 399-406.
  3. Al-Fares, M., Loukissas, A., and Vahdat, A. (2008). A Scalable, Commodity Data Center Network Architecture. ACM SIGCOMM Computer Communication Review, 38(4):63-74.
  4. Angeles, S. (2014). Virtualization vs Cloud Computing: What's the Difference? BusinessNewsDaily, January 20.
  5. Aral, A. and Ovatman, T. (2016). Network-Aware Embedding of Virtual Machine Clusters onto Federated Cloud Infrastructure. Journal of Systems and Software, 120:89-104.
  6. Basmadjian, R., Bouvry, P., Da Costa, G., Gyarmati, L., Kliazovich, D., Lafond, S., Lefevre, L., De, H., Meer, J.-M. P., Pries, R., et al. (2015). Green Data Centers. Large-scale Distributed Systems and Energy Efficiency: A Holistic View. John Wiley & Sons. P , pages 159-196.
  7. Beloglazov, A., Abawajy, J., and Buyya, R. (2012). EnergyAware Resource Allocation Heuristics for Efficient Management of Data Centers for Cloud Computing. Future Generation Computer Systems, 28(5):755- 768.
  8. Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life reviews, 2(4):353-373.
  9. Brewer, E. A. (2015). Kubernetes and the path to cloud native. In Proceedings of the Sixth ACM Symposium on Cloud Computing, pages 167-167. ACM.
  10. Chaisiri, S., Lee, B.-S., and Niyato, D. (2009). Optimal Virtual Machine Placement across Multiple Cloud Providers. In IEEE Asia-Pacific Services Computing Conference, APSCC 2009, pages 103-110. IEEE.
  11. Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2004). A (sub) Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10):1367- 1372.
  12. Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53-66.
  13. Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1):29-41.
  14. Fajjari, I., Aitsaadi, N., Pióro, M., and Pujolle, G. (2014). A New Virtual Network Static Embedding Strategy within the Clouds Private Backbone Network. Computer Networks, 62:69-88.
  15. Fang, W., Liang, X., Li, S., Chiaraviglio, L., and Xiong, N. (2013). VMPlanner: Optimizing Virtual Machine Placement and Traffic Flow Routing to Reduce Network Power Costs in Cloud Data Centers. Computer Networks, 57(1):179-196.
  16. Feller, E., Rilling, L., and Morin, C. (2011). Energy-Aware Ant Colony Based Workload Placement in Clouds. In Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing, pages 26-33. IEEE Computer Society.
  17. Gao, Y., Guan, H., Qi, Z., Hou, Y., and Liu, L. (2013). A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. Journal of Computer and System Sciences, 79(8):1230-1242.
  18. Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A., Patel, P., and Sengupta, S. (2009). Vl2: A Scalable and Flexible Data Center Network. In ACM SIGCOMM Computer Communication Review, volume 39, pages 51-62. ACM.
  19. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., and Lu, S. (2009). BCube: A High Performance, Server-centric Network Architecture for Modular Data Centers. ACM SIGCOMM Computer Communication Review, 39(4):63-74.
  20. Herbst, N. R., Kounev, S., and Reussner, R. H. (2013). Elasticity in Cloud Computing: What It Is, and What It Is Not. In ICAC, pages 23-27.
  21. Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., and Lawall, J. (2009). Entropy: a consolidation manager for clusters. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environments, pages 41-50. ACM.
  22. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H., Shenker, S., and Stoica, I. (2011). Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. In NSDI, volume 11, pages 22-22.
  23. Hoffman, K. L., Padberg, M., and Rinaldi, G. (2013). Traveling Salesman Problem. In Encyclopedia of Operations Research and Management Science, pages 1573-1578. Springer.
  24. Jennings, B. and Stadler, R. (2015). Resource Management in Clouds: Survey and Research Challenges. Journal of Network and Systems Management, 23(3):567-619.
  25. Jiankang, D., Hongbo, W., and Shiduan, C. (2015). EnergyPerformance Tradeoffs in IaaS Cloud with Virtual Machine Scheduling. Communications, China, 12(2):155-166.
  26. Kanagavelu, R., Lee, B.-S., Le, N. T. D., Mingjie, L. N., and Aung, K. M. M. (2014). Virtual Machine Placement with Two-path Traffic Routing for Reduced Congestion in Data Center Networks. Computer Communications, 53:1-12.
  27. Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., and Jiang, G. (2009). Power and performance management of virtualized computing environments via lookahead control. Cluster Computing, 12(1):1-15.
  28. Mell, P. and Grance, T. (2011). The nist definition of cloud computing.
  29. Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., and Yuan, L. (2010). Online Self-Reconfiguration with Performance Guarantee for Energy-Efficient Large-Scale Cloud Computing Data Centers. In 2010 IEEE International Conference on Services Computing (SCC), pages 514-521. IEEE.
  30. Murphy, A. (2011). Enabling Long Distance Live Migration with F5 and VMware vMotion.
  31. Pires, F. L. and Barán, B. (2015). A Virtual Machine Placement Taxonomy. In 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen, China, May 4-7, 2015, pages 159-168.
  32. Sefraoui, O., Aissaoui, M., and Eleuldj, M. (2012). OpenStack: Toward an Open-Source Solution for Cloud Computing. International Journal of Computer Applications, 55(3).
  33. Shankar, A. and Bellur, U. (2010). Virtual Machine Placement in Computing Clouds. CoRR, vol. abs/1011.5064.
  34. Speitkamp, B. and Bichler, M. (2010). A Mathematical Programming Approach for Server Consolidation Problems in Virtualized Data Centers. IEEE Transactions on Services Computing, 3(4):266-278.
  35. Stützle, T. and Hoos, H. H. (2000). Max-Min Ant System. Future Generation Computer Systems, 16(8):889- 914.
  36. Tang, Z., Mo, Y., Li, K., and Li, K. (2014). Dynamic Forecast Scheduling Algorithm for Virtual Machine Placement in Cloud Computing Environment. The Journal of Supercomputing, 70(3):1279-1296.
  37. Thapatsuwan, P., Sepsirisuk, J., Chainate, W., and Pongcharoen, P. (2009). Modifying Particle Swarm Optimisation and Genetic Algorithm for Solving Multiple Container Packing Problems. In ICCAE'09. International Conference on Computer and Automation Engineering, 2009., pages 137-141. IEEE.
  38. Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):31-42.
  39. Usmani, Z. and Singh, S. (2016). A Survey of Virtual Machine Placement Techniques in a Cloud Data Center. Procedia Computer Science, 78:491-498.
  40. Van, H. N., Tran, F. D., and Menaud, J.-M. (2010). Performance and Power Management for Cloud Infrastructures. In 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), pages 329-336. IEEE.
  41. Verma, A., Ahuja, P., and Neogi, A. (2008). pMapper: Power and Migration Cost Aware Application Placement in Virtualized Systems. In Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, pages 243-264. Springer.
  42. Vu, H. T. and Hwang, S. (2014). A Traffic and PowerAware Algorithm for Virtual Machine Placement in Cloud Data Center. International Journal of Grid & Distributed Computing, 7(1):350-355.
  43. Wang, T., Su, Z., Xia, Y., and Hamdi, M. (2014). Rethinking the Data Center Networking: Architecture, Network Protocols, and Resource Sharing. IEEE access, 2:1481-1496.
  44. Xu, J. and Fortes, J. A. (2010). Multi-Objective Virtual Machine Placement in Virtualized Data Center Environments. In Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int'l Conference on & Int'l Conference on Cyber, Physical and Social Computing (CPSCom), pages 179-188. IEEE.
  45. Yu, M., Yi, Y., Rexford, J., and Chiang, M. (2008). Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration. ACM SIGCOMM Computer Communication Review, 38(2):17-29.
  46. Zhu, Y. and Ammar, M. H. (2006). Algorithms for Assigning Substrate Network Resources to Virtual Network Components. INFOCOM, 1200(2006):1-12.
  47. Zong, B., Raghavendra, R., Srivatsa, M., Yan, X., Singh, A. K., and Lee, K.-W. (2014). Cloud Service Placement via Subgraph Matching. In 2014 IEEE 30th International Conference on Data Engineering, pages 832-843. IEEE.

Paper Citation

in Harvard Style

Challita S., Paraiso F. and Merle P. (2017). A Study of Virtual Machine Placement Optimization in Data Centers . In Proceedings of the 7th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, ISBN 978-989-758-243-1, pages 343-350. DOI: 10.5220/0006236503430350

in Bibtex Style

author={Stephanie Challita and Fawaz Paraiso and Philippe Merle},
title={A Study of Virtual Machine Placement Optimization in Data Centers},
booktitle={Proceedings of the 7th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,},

in EndNote Style

JO - Proceedings of the 7th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,
TI - A Study of Virtual Machine Placement Optimization in Data Centers
SN - 978-989-758-243-1
AU - Challita S.
AU - Paraiso F.
AU - Merle P.
PY - 2017
SP - 343
EP - 350
DO - 10.5220/0006236503430350