A Neuro-automata Decision Support System for Phytosanitary Control of Late Blight

Gizelle Kupac Vianna, Gustavo Sucupira Oliveira, Gabriel Vargas Cunha

Abstract

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. In our work, we designed and implemented a decision support system that may small tomatoes producers in monitoring their crops by automatically detecting the symptoms of foliage diseases. We have also investigated ways to recognize the late blight disease from the analysis of tomato digital images, using a pair of multilayer perceptron neural network. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The networks outputs are combined to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level at each plant. That levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

References

  1. Barbedo, J., 2013. Digital image processing techniques for detecting, quantifying and classifying plant diseases. In SpringerPlus, 2:660.
  2. Bock, C., Poole, G., Parker, P., Gottwald, T., 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. In Critical Reviews in Plant Sciences, vol. 29, n. 1-3, pp.:59-107.
  3. Bugiani, R. et al., 1995. Monitoring airborne concentrations of sporangia of Phytophthora infestans in relation to tomato late blight in Emilia Romagna, Italy. In International Journal of Aerobiology, vol. 11, , pp.:41-46, Elsevier Science.
  4. Correa, F., Bueno, J., Carmo, M., 2009. Comparison of three diagrammatic keys for the quantification of late blight in tomato leaves. In Plant Pathology, vol. 58, pp.:1128-1133.
  5. Goufo, O., Mofor, T., Ngnokam, D., 2008. High Efficacy of Extracts of Cameroon Plants Against Tomato Late Blight Disease. In Agronomy for Sustainable Development, vol. 8, INRA, EDP Sciences, pp.567- 573.
  6. Hyre, R., 1954. Progress in forecasting late blight of potato and tomato. In Plant Disease Reporter, Illinois, vol. 38, n.4, pp.: 245-253.
  7. IBGE, 2016. Sistema IBGE de Recuperação Automática - SIDRA. [online] Available at: http://www.sidra.ibge. gov.br/bda/agric/default.asp?z=t&o=11&i=P [Accessed 18 Oct. 2016].
  8. INMET, 2016. [online] Available at: http:// www.inmet.gov.br/portal/ [Accessed 5 Jun. 2016].
  9. Mahlein, A., Oerke, E., Steiner, U., Dehne, H., 2012. Recent advances in sensing plant diseases for precision crop protection. In European Journal of Plant Pathology, vol. 133, n.1, pp.:197-209.
  10. MAPA, 2016. Estatísticas e Dados Básicos de Economia Agrícola. [online] Available at: http:// www.agricultura.gov.br/arq_editor/Pasta%20de%20Se tembro%20-%202016.pdf, [Accessed 10 Oct. 2016].
  11. Mizubuti, E., Maziero, J., Maffia, L, Haddad, F., Lima, M., 2002. CGTE Program: Simulation, Epidemiology and Management of Late Blight. In Global Initiative on Late Blight Conference, Hamburg, Germany.
  12. Neves, E., Rodrigues, L., Dayoub, M., Dragone, D., 2003. Bataticultura: dispêndios com defensivos agrícolas no quinquênio 1997-2001. In Batata Show, vol. 6, pp. 22- 23.
  13. Nixon, M., Aguado, A., 2008. Feature Extraction and Image Processing, 2nd Ed, Elsevier Ltd.
  14. Park, D., Zhang, Y., Kim, B., 2014. Improvement of resistance to late blight in hybrid tomato. In Hort. Environm. Biotechnol, vol. 55(2), Springer, pp.:120- 124.
  15. Rebouças, T. et al., 2014. Potencialidade de Fungicida e Agente Biológico no Controle da Requeima do Tomateiro. In Horticultura Brasileira, vol.32(01).
  16. Rembialkowska, E., 2007. Quality of plant products from organic agriculture. In J. Sci. Food Agric., vol. 87, pp.:2757-2762.
  17. Sankaran, S., Mishraa, A., Ehsani, R., Davis, C., 2010. A review of advanced techniques for detecting plant diseases. In Computers and Electronics in Agriculture, vol. 72, n.1, pp.:1-13.
  18. Saxena, A., Sarma, B., Singh, H., 2014. Effect of Azoxystrobin Based Fungicides in Management of Chilli and Tomato Diseases. In Proced. National Academy of Sciences, India:Springer.
  19. Sevarac, Z., 2012. Neuroph - Java neural network framework. [online] Available at: http:// neuroph.sourceforge.net/ [Accessed 10 Jan. 2012].
  20. Tilman, D. et al., Agricultural sustainability and intensive production practices, 2002. In Nature, Aug 8, 418(6898), pp.: 671-677.
  21. UCIPM, 2016. [online] Available at: http://www.ipm.ucdavis.edu/DISEASE/DATABASE/ potatolateblight.html [Accessed 9 Jun. 2016].
  22. USDA, 2016. USABlight Project, [online] Available at: https://usablight.org/node/29 [Accessed 4 Oct. 2016].
  23. Vianna, G., Cruz, S., 2013a. Análise inteligente de imagens digitais no monitoramento da requeima em tomateiros. In Anais do IX Congresso Brasileiro de Agroinformática. Cuiabá, Brazil.
  24. Vianna, G.K., Cruz, S., 2013b. Redes neurais artificiais aplicadas ao monitoramento da requeima em tomateiros. In Anais do X Encontro Nacional de Inteligência Artificial e Computacional (ENIAC), Fortaleza, Brazil.
  25. Vibhute, A., Bodhe, S.K., 2012. Applications of image processing in agriculture: a survey. In International Journal of Computer Applications, vol. 52, n.2, pp.:34-40.
  26. Zamberlan, F. et al., 2014. Produção e manejo agrícola: impactos e desafios para sustentabilidade ambiental. In Engenharia Sanitária Ambiental, Edição Especial, pp. 95-100.
  27. Zhang, C. et al., 2013. Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. In Theor. Appl. Genet., vol. 126, Springer-Verlag, pp.:2643-2653.
  28. Zhanga, N., Wangb, M., Wanga, N., 2002. Precision agriculture-a worldwide overview. In Computers and Electronics in Agriculture. vol. 36, issues 2-3, pp.:113-132.
Download


Paper Citation


in Harvard Style

Vianna G., Oliveira G. and Cunha G. (2017). A Neuro-automata Decision Support System for Phytosanitary Control of Late Blight . In Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-247-9, pages 481-488. DOI: 10.5220/0006236104810488


in Bibtex Style

@conference{iceis17,
author={Gizelle Kupac Vianna and Gustavo Sucupira Oliveira and Gabriel Vargas Cunha},
title={A Neuro-automata Decision Support System for Phytosanitary Control of Late Blight},
booktitle={Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2017},
pages={481-488},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006236104810488},
isbn={978-989-758-247-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 19th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - A Neuro-automata Decision Support System for Phytosanitary Control of Late Blight
SN - 978-989-758-247-9
AU - Vianna G.
AU - Oliveira G.
AU - Cunha G.
PY - 2017
SP - 481
EP - 488
DO - 10.5220/0006236104810488