Application of Sensory Body Schemas to Path Planning for Micro Air Vehicles (MAVs)

Eniko T. Enikov, Juan-Antonio Escareno

2015

Abstract

To date, most autonomous micro air vehicles (MAV-s) operate in a controlled environment, where the location of and attitude of the aircraft are measured be dedicated high-power computers with IR tracking capability. If MAV-s are to ever exit the lab and carry out autonomous missions, their flight control systems needs to utilize on-board sensors and high-efficiency attitude determination algorithms. To address this need, we investigate the feasibility of using body schemas to carry out path planning in the vision space of the MAV. Body schemas are a biologically-inspired approach, emulating the plasticity of the animal brains, allowing efficient representation of non-linear mapping between the body configuration space, i.e. its generalized coordinates and the resulting sensory outputs. This paper presents a numerical experiment of generating landing trajectories of a miniature rotor-craft using the notion of body and image schemas. More specifically, we demonstrate how a trajectory planning can be executed in the image space using a pseudo-potential functions and a gradient-based maximum seeking algorithm. It is demonstrated that a neural-gas type neural network, trained through Hebbian-type learning algorithm can learn a mapping between the rotor-craft position/attitude and the output of its vision sensors. Numerical simulations of the landing performance of a physical model is also presented, The resulting trajectory tracking errors are less than 8 %.

References

  1. (2007). Embedded control system for a four rotor UAV, volume 21.
  2. Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application of reinforcement learning to aerobatic helicopter flight. Advances in neural information processing systems, 19:1.
  3. Berlucchi, G. and Aglioti, S. (1997). The body in the brain: neural bases of corporeal awareness. Trends in neurosciences, 20(12):560-564.
  4. Berthoz, A. (2000). The brain's sense of movement. Harvard University Press.
  5. Escareno, J., Rakotondrabe, M., Flores, G., and Lozano, R. (2013). Rotorcraft mav having an onboard manipulator: Longitudinal modeling and robust control. In Control Conference (ECC), 2013 European, pages 3258-3263. IEEE.
  6. Fantoni, I. and Lozano, R. (2002). Nonlinear control for underactuated mechanical systems. Springer.
  7. Fuke, S., Ogino, M., and Asada, M. (2007). Body image constructed from motor and tactile images with visual information. International Journal of Humanoid Robotics, 4(02):347-364.
  8. Gillula, J. H., Huang, H., Vitus, M. P., and Tomlin, C. J. (2011). Design and analysis of hybrid systems, with applications to robotic aerial vehicles. In Robotics Research, pages 139-149. Springer.
  9. AddisonGoldstein, H. (1980). Wesley.
  10. Graziano, M. S., Cooke, D. F., and Taylor, C. S. (2000). Coding the location of the arm by sight. Science, 290(5497):1782-1786.
  11. Graziano, M. S., Taylor, C. S., and Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34(5):841-851.
  12. Head, H. and Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34(2-3):102-254.
  13. Hoffmann, M., Marques, H. G., Hernandez Arieta, A., Sumioka, H., Lungarella, M., and Pfeifer, R. (2010). Body schema in robotics: a review. Autonomous Mental Development, IEEE Transactions on, 2(4):304- 324.
  14. Iriki, A., Tanaka, M., and Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport, 7(14):2325-2330.
  15. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1):59-69.
  16. Lupashin, S., Schollig, A., Sherback, M., and D'Andrea, R. (2010). A simple learning strategy for high-speed quadrocopter multi-flips. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 1642-1648. IEEE.
  17. Martinetz, T., Schulten, K., et al. (1991). A” neural-gas” network learns topologies. University of Illinois at Urbana-Champaign.
  18. Melzack, R. (1990). Phantom limbs and the concept of a neuromatrix. Trends in neurosciences, 13(3):88-92.
  19. Morasso, P. and Sanguineti, V. (1995). Self-organizing body schema for motor planning. Journal of Motor Behavior, 27(1):52-66.
  20. Purwin, O. and D'Andrea, R. (2009). Performing aggressive maneuvers using iterative learning control. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, pages 1731-1736. IEEE.
  21. Ramachandran, V. S. and Rogers-Ramachandran, D. (1996). Synaesthesia in phantom limbs induced with mirrors. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1369):377-386.
  22. Sepulchre, R., Jankovic, M., and Kokotovic, P. (1997). Constructive Nonlinear Control. Springer-Verlag.
  23. Stoytchev, A. (2003). Computational model for an extendable robot body schema.
  24. Tsukamoto, Y. (2000). Pinpointing of an upper limb prosthesis. JPO: Journal of Prosthetics and Orthotics, 12(1):5-6.
Download


Paper Citation


in Harvard Style

Enikov E. and Escareno J. (2015). Application of Sensory Body Schemas to Path Planning for Micro Air Vehicles (MAVs) . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 25-31. DOI: 10.5220/0005547000250031


in Bibtex Style

@conference{icinco15,
author={Eniko T. Enikov and Juan-Antonio Escareno},
title={Application of Sensory Body Schemas to Path Planning for Micro Air Vehicles (MAVs)},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={25-31},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005547000250031},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Application of Sensory Body Schemas to Path Planning for Micro Air Vehicles (MAVs)
SN - 978-989-758-122-9
AU - Enikov E.
AU - Escareno J.
PY - 2015
SP - 25
EP - 31
DO - 10.5220/0005547000250031