BAlGaN-based Vertical Cavity Surface Emitting Laser Operating in Deep UV Region

X. LI, S. Sundaram, P. Disseix, S. Bouchoule, G. Le Gac, G. Patriarche, F. Réveret, J. Leymarie, Y. El Gmili, J. Streque, F. Genty, J-P. Salvestrini, P. L. Voss, R. D. Dupuis, A. Ougazzaden

2015

Abstract

Vertical cavity surface emitting laser (VCSEL) is one of the most attractive configurations for semiconductor light emitting devices. However, the III-nitride VCSELs based on AlGaInN demonstrated so far operate in the wavelengths of visible violet and blue spectral range, while no efficient VCSELs operating below 300 nm were reported. To extend the VCSEL emission to the ultraviolet region, the challenges lie in many aspects, such as degradation of the structural quality of heteroepitaxial AlGaN materials with increasing Al molar ratio, lack of high quality AlN substrates, strong quantum-confined Stark effect (QCSE) induced by piezoelectric and spontaneous polarization, and decrease of TE polarization emission as the Al composition increases for the deep UV wavelength. Besides, development of high-reflectivity distributive Bragg reflector (DBR) structures with large bandwidth for the UV VCSELs is a big challenge, considering the limited refractive index contrast and large lattice mismatch for conventionally used AlGaN/Al(Ga)N structures. The objective of this work is to develop VCSELs operating below 300 nm. In this framework, the AlGaN MQWs grown on relaxed AlGaN buffer emitting at 280 nm has been studied for the active region, including AlGaN epitaxial growth for the control of composition and strain relaxation, the realization of TE-enhanced MQWs design and the related characterizations. For the DBRs, new BAlGaN material system would be applied with more freedom in bandgap, strain engineering with tailoring of refractive index. The growth conditions of BAlN single layers, BAlN/AlN heterostructure with 11% boron and structural characteristics have been explored. The promising results achieved for both AlGaN MQWs and BAlN materials advance prospects for the development of VCSELs and other light emitting devices in the DUV region.

References

  1. Abid, M. et al., 2012. Distributed Bragg reflectors based on diluted boron-based BAlN alloys for deep ultraviolet optoelectronic applications. Applied Physics Letters, 100(5), p.051101.
  2. Akasaka, T. & Makimoto, T., 2006. Flow-rate modulation epitaxy of wurtzite AlBN. Applied Physics Letters, 88(4), p.041902.
  3. Akasaki, I. et al., 1995. Stimulated emission by current injection from an AlGaN / GaN / GaInN quantum well device. Japanese Journal of Applied Physics, 34, p.1517.
  4. Boguslawski, P., Rapcewicz, K. & Bernholc, J.J., 2000. Surface segregation and interface stability of AlN/GaN , GaN/InN , and AlN/InN {0001} epitaxial systems. Physical Review B, 61(16), pp.820-826.
  5. Chuang, S.L. & Chang, C.S., 1996. K P Method for strained wurtzite semiconductors. Physical Review B, 54(4), pp.2491-2504.
  6. Ding, J. et al., 1990. Laser action in the blue-green from optically pumped (Zn,Cd)Se/ZnSe single quantum well structures. Applied Physics Letters, 57(26), pp.2756-2758.
  7. G.B.Stringfellow, 1993. Compositional ordering in semiconductor alloys. Mater. Res. Soc. Symp. Proc., 312, pp.35-46.
  8. Gautier, S. et al., 2007. GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3. Journal of Crystal Growth, 298, pp.428-432.
  9. Gil, B., 1998. Group III nitride semiconductor compounds, Clarendon Press.
  10. Han, J. et al., 1998. AlGaN/GaN quantum well ultraviolet light emitting diodes. Applied Physics Letters, 73(12), p.1688.
  11. Higuchi, Y. et al., 2008. Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection. Applied Physics Express, 1, p.121102 1-3.
  12. Hirayama, H. et al., 2007. 231-261 nm AlGaN deepultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Applied Physics Letters, 91(7), p.71901.
  13. Hirayama, H. et al., 2014. Recent progress and future prospects of AlGaN-based high-efficiency deepultraviolet light-emitting diodes. Japanese Journal of Applied Physics, 53(10), p.100209.
  14. Ippommatsu, M. et al., 2013. Development of AlGaN DUV-LED. In 10th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).
  15. Ivanov, S.V. et al., 2014. Plasma-assisted molecular beam epitaxy of Al(Ga)N layers and quantum well structures for optically pumped mid-UV lasers on cAl2O3. Semiconductor Science and Technology, 29(8), p.084008.
  16. Johnson, N.M. et al., 2012. In paper presented at the 9th International Symposium on Semiconductor Light Emitting Devices, Berlin.
  17. Kasahara, D. et al., 2011. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Applied Physics Express, 4(7), p.072103 1-3.
  18. Kim, J. et al., 2014. Origins of unintentional incorporation of gallium in InAlN layers during epitaxial growth, part II: Effects of underlying layers and growth chamber conditions. Journal of Crystal Growth, 388, p.143-149.
  19. Kolbe, T. et al., 2010. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Applied Physics Letters, 97(17), p.171105.
  20. Krestnikov, I.L. & Ledentsov, N.N., 1999. Photopumped InGaN / GaN / AlGaN Vertical Cavity Surface Emitting Laser Operating at Room Temperature. phys. stat. sol., 511, pp.511-516.
  21. Leroux, M. et al., 2004. About some optical properties of AlxGa1-xN /GaN quantum wells grown by molecular beam epitaxy. Superlattices and Microstructures, 36, pp.659-674.
  22. Leroux, M. et al., 2002. Optical characterization of AlxGa1-xN alloys ( x<0.7 ) grown on sapphire or silicon. Physica Status Solidi (b), 234(3), pp.887-891.
  23. Li, X., Sundaram, S., Disseix, P., et al., 2015. AlGaNbased MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm. Optical Materials Express, 5(2), pp.380-392.
  24. Li, X., Sundaram, S., El Gmili, Y., et al., 2014. BAlN thin layers for deep UV applications. In E-MRS Spring Meeting.
  25. Li, X., Sundaram, S., El Gmili, Y., et al., 2014. MOVPE grown periodic AlN/BAlN heterostructure with high boron content. Journal of Crystal Growth, pp.3-6.
  26. Li, X.-H. et al., 2014. Low-threshold stimulated emission at 249?nm and 256?nm from AlGaN-based multiplequantum-well lasers grown on sapphire substrates. Applied Physics Letters, 105(14), p.141106.
  27. Lin, B.C. et al., 2014. Design and fabrication of a InGaN vertical-cavity surface-emitting laser with a composition-graded electron-blocking layer. Laser Physics Letters, 11(8), p.085002.
  28. Martens, M. et al., 2014. Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates. IEEE Photonics Technology Letters, 26(4), pp.342-345.
  29. McIntosh, F.G. et al., 1996. Growth and characterization of AlInGaN quaternary alloys. Applied Physics Letters, 68(1), p.40.
  30. Mitrofanov, O. et al., 2006. High-reflectivity ultraviolet AlGaN/AlGaN distributed Bragg reflectors. Applied Physics Letters, 88(17), p.171101.
  31. Moe, C.G. et al., 2006. AlGaN/AlN distributed bragg reflectors for deep ultraviolet wavelengths. Physica Status Solidi (a), 203(8), pp.1915-1919.
  32. Murotani, H. et al., 2011. Silicon concentration dependence of optical polarization in AlGaN epitaxial layers. Applied Physics Letters, 98(2), p.021910.
  33. Nam, K.B. et al., 2004. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Applied Physics Letters, 84(25), pp.5264-5266.
  34. Northrup, J.E. et al., 2012. Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells. Applied Physics Letters, 100(2), p.021101.
  35. Pantzas, K. et al., 2012. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy. Nanotechnology, 23(45), p.455707.
  36. Redwing, J.M. et al., 1996. An optically pumped GaNAlGaN vertical cavity surface emitting laser. Applied Physics Letters, 69(1), pp.1-3.
  37. Reuters, B. et al., 2012. Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy. Journal of Applied Physics, 112(9), p.093524.
  38. Ryu, H.-Y. et al., 2013. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Applied Physics Express, 6, p.062101.
  39. Shatalov, M. et al., 2012. AlGaN deep-ultraviolet lightemitting diodes with external quantum efficiency above 10%. Applied Physics Express, 5, p.082101.
  40. Shatalov, M. et al., 2002. Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells. IEEE Journal of Selected Topics in Quantum Electronics, 8(2), pp.302-309.
  41. Tersoff, J., 1996. Stress-driven alloy decomposition during step-flow growth. Physical review letters, 77(10), pp.2017-2020.
  42. Venezuela, P. et al., 1999. Self-organized growth of alloy superlattices. Letters to nature, 397, pp.678-681.
  43. Watanabe, S. et al., 2003. Refractive indices of BxAl1-xN (x= 0-0.012) and ByGa1-yN (y= 0-0.023) epitaxial layers in ultraviolet region. Physica Status Solidi (c), 0(7), p.2691-2694.
  44. Xie, J. et al., 2013. Lasing and longitudinal cavity modes in photo-pumped deep ultraviolet AlGaN heterostructures. Applied Physics Letters, 102(17), p.171102.
Download


Paper Citation


in Harvard Style

LI X., Sundaram S., Disseix P., Bouchoule S., Le Gac G., Patriarche G., Réveret F., Leymarie J., Gmili Y., Streque J., Genty F., Salvestrini J., Voss P., Dupuis R. and Ougazzaden A. (2015). BAlGaN-based Vertical Cavity Surface Emitting Laser Operating in Deep UV Region . In Doctoral Consortium - DCPHOTOPTICS, (PHOTOPTICS 2015) ISBN , pages 26-36


in Bibtex Style

@conference{dcphotoptics15,
author={X. LI and S. Sundaram and P. Disseix and S. Bouchoule and G. Le Gac and G. Patriarche and F. Réveret and J. Leymarie and Y. El Gmili and J. Streque and F. Genty and J-P. Salvestrini and P. L. Voss and R. D. Dupuis and A. Ougazzaden},
title={BAlGaN-based Vertical Cavity Surface Emitting Laser Operating in Deep UV Region},
booktitle={Doctoral Consortium - DCPHOTOPTICS, (PHOTOPTICS 2015)},
year={2015},
pages={26-36},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCPHOTOPTICS, (PHOTOPTICS 2015)
TI - BAlGaN-based Vertical Cavity Surface Emitting Laser Operating in Deep UV Region
SN -
AU - LI X.
AU - Sundaram S.
AU - Disseix P.
AU - Bouchoule S.
AU - Le Gac G.
AU - Patriarche G.
AU - Réveret F.
AU - Leymarie J.
AU - Gmili Y.
AU - Streque J.
AU - Genty F.
AU - Salvestrini J.
AU - Voss P.
AU - Dupuis R.
AU - Ougazzaden A.
PY - 2015
SP - 26
EP - 36
DO -