Broadband Absorption in the Cavity Resonators with Changed Order

Agata Roszkiewicz

2015

Abstract

This paper presents an analysis of phenomena leading to high and broadband absorption at a structure combined of three elements: one-dimensional dielectric diffraction grating placed between silver grating and a thick silver substrate. Each element of the dielectric grating consists of media of different dielectric constants but of the same geometrical dimensions. A broad spectrum of high absorption in such a structure is achieved as a result of two issues. First, due to the different excitation conditions the cavity resonances are excited at different wavelengths. Second, the changed order of the resonators leads to further broadening of the absorption band.

References

  1. Astilean, S., Lalanne, P., Palamaru, M., 2000. Light transmission through metallic channels much smaller than the wavelength, Opt. Commun. 175 265.
  2. Bouillard, J.-S., Vilain, S., Dickson, W., Wurtz, G. A., Zayats, A. V., 2012. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp, Scientific Reports 2 829, 1.
  3. Chen, L., Wang, G. P., Gan, Q., Bartoli, F. J., 2010. Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies, Appl. Phys. Lett. 97 153115.
  4. Diem, M., Koschny, T., Soukoulis, C. M., 2009. Wideangle perfect absorber/thermal emitter in the terahertz regime, Phys. Rev. B 79 033101.
  5. Dolev, I., Volodarsky, M., Porat, G., Arie, A., 2011. Multiple coupling of surface plasmons in quasiperiodic gratings, Opt. Lett. 36 1584.
  6. Ferry, V. E., Munday, J. N., Atwater, H. A., 2010. Design considerations for plasmonic photovoltaics, Adv. Mater. 22 4794.
  7. Gan, Q., Bartoli, F. J., 2011. Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping, Appl. Phys. Lett. 98 251103.
  8. Hao, J., Wang, J., Liu, X., Padilla, W. J., Zhou, L., Qiu, M., 2010. High performance optical absorber based on a plasmonic metamaterial, Appl. Phys. Lett. 96 251104.
  9. Hu, C., Liu, L., Zhao, Z., Chen, X., Luo, X., 2009. Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies, Opt. Express 17 16745.
  10. Johnson, P. B., Christy, R. W., 1972. Optical constants of the noble metals, Phys. Rev. B 6 4370.
  11. Koechlin, C., Bouchon, P., Pardo, F., Jaeck, J., Lafosse, X., Pelouard, J.-L., Haidar, R., 2011. Total routing and absorption of photons in dual color plasmonic antennas, Appl. Phys. Lett. 99 241104.
  12. Kravets, V. G., Neubeck, S., Grigorenko, A. N., 2010. Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix, Phys. Rev. B 81 165401.
  13. Liu, X., Starr, T., Starr, A. F., Padilla, W. J., 2010. Infrared spatial and frequency selective metamaterial with near-unity absorbance, Phys. Rev. Lett. 104 207403.
  14. Liu, X., Tyler, T., Starr, T., Starr, A. F., Jokerst, N. M., Padilla, W. J., 2011. Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett. 107 045901.
  15. Maier, S. A., 2007. Plasmonics: Fundamentals and Applications, New York: Springer.
  16. Meng, L., Zhao, D., Li, Q., Qiu, M., 2013. Polarizationsensitive perfect absorbers at near-infrared wavelengths, Opt. Express 21 A111.
  17. Moreau, A., Ciracì, C., Smith, D. R., 2013. Impact of nonlocal response on metallodielectric multilayers and optical patch antennas, Phys. Rev. B 87 045401.
  18. Pan, Z., Guo, J., 2013. Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas, Opt. Express 21 32491.
  19. Roszkiewicz, A., Nasalski, W., 2012. Reflection suppression and absorption enhancement of optical field at thin metal gratings with narrow slits, Opt. Lett. 37 3759.
  20. Shchegolkov, D. Y., Azad, A. K., O'Hara, J. F., Simakov, E. I., 2010. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers, Phys. Rev. B 82 205117.
  21. Song, Y., Wang, C., Lou, Y., Cao, B., Li, X., 2013. Nearperfect absorber with ultrawide band width in infrared region using a periodically chirped structure, Opt. Commun. 305 212.
  22. Wang, H., Wang, L., 2013. Perfect selective metamaterial solar absorbers, Opt. Express 21 A1078.
  23. Zhang, F., Yang, L., Jin, Y., He, S., 2013. Turn a highlyreflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating, Prog. Electromagn. Res. 134 95.
Download


Paper Citation


in Harvard Style

Roszkiewicz A. (2015). Broadband Absorption in the Cavity Resonators with Changed Order . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS, ISBN 978-989-758-093-2, pages 81-86. DOI: 10.5220/0005332900810086


in Bibtex Style

@conference{photoptics15,
author={Agata Roszkiewicz},
title={Broadband Absorption in the Cavity Resonators with Changed Order},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,},
year={2015},
pages={81-86},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005332900810086},
isbn={978-989-758-093-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,
TI - Broadband Absorption in the Cavity Resonators with Changed Order
SN - 978-989-758-093-2
AU - Roszkiewicz A.
PY - 2015
SP - 81
EP - 86
DO - 10.5220/0005332900810086