Strategies to Optimize the Impact of Supplies Distribution in Post-disaster Operations

Christophe Duhamel, Daniel Brasil, Andréa Cynthia Santos, Eric Châtelet, Babiga Birregah

2014

Abstract

We consider the problem of setting a supplies distribution system in a post-disaster context. The primary decision variables correspond to the site opening schedule and the secondary variables focus on the supplies distribution to the population zones. The objective is to optimize the supply delivery to the population, while satisfying some logistics restrictions, both human and financial. We present a non-linear model and we propose a decomposition approach. The master level problem is addressed by NOMAD solver. The slave subproblem is treated as a black-box and it is solved by a combination of two heuristics and a VND local search. Numerical results on both random instances and on one realistic instance, using several scenarios, shows our approach provides satisfactory results.

References

  1. Abounacer, R., Rekik, M., and Renaud, J. (2014). An exact solution approach for multi-objective locationtransportation problem for disaster response. Computers & Operations Research, 41:83-93.
  2. Afsar, H. M., Prins, C., and Santos, A. C. (2012). Exact and heuristics strategies for solving the generalized vehicle routing problem. In Proceedings of the 5th International Workshop on Freight Transportation and Logistics, ODYSSEUS, pages 91-94, Mykonos, Greece.
  3. Afsar, H. M., Prins, C., and Santos, A. C. (2014). Exact and heuristic algorithms for solving the generalized vehicle routing problem with flexible fleet size. International Transactions in Operational Research, 21(1):153-175.
  4. Berkoune, D., Renaud, J., Rekik, M., and Ruiz, A. (2012). Transportation in disaster response operations. SocioEconomic Planning Sciences, 46:23-32.
  5. Boin, A. and McConnell, A. (2007). Preparing for critical infrastructure breakdowns: the limits of crisis management and the need for resilience. Journal of Contingencies and Crisis Management, 15(1):50-59.
  6. Bruneau, M., Eeri, A. M., Chang, S. E., Eeri, B. M., T, R., Eeri, C. M., Lee, G. C., Eeri, A. M., Orourke, T. D., Eeri, D. M., Reinhorn, A. M., Eeri, E. M., Shinozuka, M., Kathleen, F., Eeri, G. M., Wallace, W. A., and I, D. V. W. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19:733-752.
  7. Bruneau, M. and Reinhorn, A. (2007). Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 23(1):41-62.
  8. Haimes, Y. Y. (2009). On the definition of resilience in systems. Risk Analysis, 29(4):498-501.
  9. Le Digabel, S. (2011). Algorithm 909: NOMAD:nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 37(4):1-15.
  10. Liberatore, F., Ortuo, M., Tirado, G., Vitoriano, B., and Scaparra, M. (2014). A hierarchical compromise model for the joint optimization of recovery operations and distribution of emergency goods in humanitarian logistics. Computers & Operations Research, 42(0):3 - 13.
  11. Mezzou, O., Birregah, B., and Chaˆtelet, E. (2011). A theoretical study of the interactions between the components of resilience in critical urban infrastructures. In Smart and Sustainable City (ICSSC 2011), IET International Conference on, pages 1-6.
  12. Mladenovic, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11):1097-1100.
  13. Nolz, P. C., Doerner, K. F., Gutjahr, W. J., and Hartl, R. F. (2010). A bi-objective metaheuristic for disaster relief operation planning. In Coello, C. A. C., Dhaenens, C., and Jourdan, L., editors, Advances in Multi-Objective Nature Inspired Computing, volume 272 of Studies in Computational Intelligence, pages 167-187. Springer.
  14. Prins, C., Santos, A. C., and Afsar, H. M. (2012). Splitting procedure and a relaxed iterated local search for the generalized vehicle routing problem. In Procedings of the Latino-Iberoamericano de Investigación Operativa, Simpósio Brasileiro de Pesquisa Operacional, CLAIO-SBPO, Rio de Janeiro, Brazil.
  15. Rath, S. and Gutjahr, W. J. (2014). A math-heuristic for the warehouse locationrouting problem in disaster relief. Computers & Operations Research, 42:25-39.
  16. Rottkemper, B., Fischer, K., and Blecken, A. (2012). A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations. Socio-Economic Planning Sciences, 46:98-109.
  17. Vitoriano, B. n., Ortun˜o, M., Tirado, G., and Montero, J. (2011). A multi-criteria optimization model for humanitarian aid distribution. Journal of Global Optimization, 51(2):189-208.
Download


Paper Citation


in Harvard Style

Duhamel C., Brasil D., Cynthia Santos A., Châtelet E. and Birregah B. (2014). Strategies to Optimize the Impact of Supplies Distribution in Post-disaster Operations . In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-017-8, pages 342-349. DOI: 10.5220/0004927703420349


in Bibtex Style

@conference{icores14,
author={Christophe Duhamel and Daniel Brasil and Andréa Cynthia Santos and Eric Châtelet and Babiga Birregah},
title={Strategies to Optimize the Impact of Supplies Distribution in Post-disaster Operations},
booktitle={Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2014},
pages={342-349},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004927703420349},
isbn={978-989-758-017-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Strategies to Optimize the Impact of Supplies Distribution in Post-disaster Operations
SN - 978-989-758-017-8
AU - Duhamel C.
AU - Brasil D.
AU - Cynthia Santos A.
AU - Châtelet E.
AU - Birregah B.
PY - 2014
SP - 342
EP - 349
DO - 10.5220/0004927703420349