Ankle-Knee Prosthesis with Powered Ankle and Energy Transfer - Development of the CYBERLEGs Alpha-Prototype

Louis Flynn, Joost Geeroms, Rene Jimenez-Fabian, Bram Vanderborght, Nicola Vitiello, Dirk Lefeber

2013

Abstract

Active prostheses have recently come onto the market, but are limited to modular forms without connections between the knee and ankle modules. Here we present the simulation, design, and preliminary data of a new knee-ankle prosthesis with an actuated ankle based on a variable stiffness actuator with energy transfer from the knee to the ankle as a part of the CYBERLEGs FP7-ICT project. The CYBERLEGs a-Prosthesis utilizes a novel active ankle joint architecture and energy transfer mechanism to transfer energy from the knee joint to the ankle. The device is capable of producing a level ground walking gait that closely approximates the joint torques and kinematics of a non-amputee while while maintaining compliant joints, which has the potential to decrease impulse losses, and ultimately reduce the end user energy consumption. This first prototype consists of a passive knee and an active ankle, which are energetically coupled to reduce the total power consumption of the device.

References

  1. Au, S., Berniker, M., and Herr, H. (2008). Powered anklefoot prosthesis to assist level-ground and stair-descent gaits. Neural Networks, 21(4):654-66.
  2. Au, S. and Herr, H. (2008). Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3):52-59.
  3. Bellman, R., Holgate, M., and Sugar, T. (2008). SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. IEEE RAS & EMBS, pages 511-516.
  4. Cherelle, P., Matthys, A., and et al. (2012). The AMP-Foot 2.0: Mimicking Intact Ankle Behavior with a Powered Transtibial Prosthesis. In IEEE International Conference on Biomedical Robotics and Biomechatronics.
  5. Donati, M. et al. (2013). A flexible sensor technology for the distributed measurement of interaction pressure. Sensors, 13(1):1021-1045.
  6. Herr, H. M. and Grabowski, A. M. (2012). Bionic anklefoot prosthesis normalizes walking gait for persons with leg amputation. Proc. Roy. Soc. Lon. B, 279:457- 464.
  7. Hitt, J. K., Bellman, R., and et al. (2007). The SPARKy Spring Ankle with Regenerative Kinetics project: Design and analysis of a robotic transtibial prosthesis with regenerative kinetics. In ASME IDETC/CIE, Las Vegas, Nevada, USA, pages 1587-1596.
  8. Hollander, K. W., Ilg, R., Sugar, T. G., and Herring, D. (2006). An efficient robotic tendon for gait assistance. Journal of biomechanical engineering, 128(5):788- 91.
  9. IWalk (2013). Biom. http://www.iwalk.com/.
  10. Kaufman, K. R., Levine, J. A., and et al. (2008). Energy Expenditure and Activity of Transfemoral Amputees Using Mechanical and Microprocessor-Controlled Prosthetic Knees. Archives of Physical Medicine and Rehabilitation, 89(July):1380-1385.
  11. Matthys, A., Cherelle, P., Van Damme, M., Vanderborght, B., and Lefeber, D. (2012). Concept and design of the HEKTA (Harvest Energy from the Knee and Transfer it to the Ankle) transfemoral prosthesis. In IEEE International Conference on Biomedical Robotics and Biomechatronics.
  12. Ossur (2013). Power knee. www.ossur.com.
  13. Sup, F., Bohara, A., and Goldfarb, M. (2008). Design and Control of a Powered Transfemoral Prosthesis. International Journal of Robotics Research, 27(2):263- 273.
  14. Unal, R., Behrens, S. M., Carloni, R., Hekman, E. E. G., Stramigioli, S., and Koopman, H. F. J. M. (2010). Prototype Design and Realization of an Innovative Energy Efficient Transfemoral Prosthesis. In IEEE RAS & EMBS.
  15. Van Ham, R., Vanderborght, B., van Damme, M., Verrelst, B., and Lefeber, D. (2007). MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems, 55 (10):761-768.
  16. Vanderborght, B., Bicchi, A., and et al. (2013). Variable Impedance Actuators : a Review. Robotics and Autonomous Systems, (Accepted June 2013):1-39.
  17. Villalpando, E. C. M., Weber, J., and et al. (2008). Design of an Agonist-Antagonist Active Knee Prosthesis. IEEE RAS & EMBS, pages 529-534.
  18. Winter, D.A. (2005). Biomechanics and Motor Control of Human Movement. John Wiley and Sons, United States of America.
Download


Paper Citation


in Harvard Style

Flynn L., Geeroms J., Jimenez-Fabian R., Vanderborght B., Vitiello N. and Lefeber D. (2013). Ankle-Knee Prosthesis with Powered Ankle and Energy Transfer - Development of the CYBERLEGs Alpha-Prototype . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: RoboAssist, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 224-228. DOI: 10.5220/0004664702240228


in Bibtex Style

@conference{roboassist13,
author={Louis Flynn and Joost Geeroms and Rene Jimenez-Fabian and Bram Vanderborght and Nicola Vitiello and Dirk Lefeber},
title={Ankle-Knee Prosthesis with Powered Ankle and Energy Transfer - Development of the CYBERLEGs Alpha-Prototype},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: RoboAssist, (NEUROTECHNIX 2013)},
year={2013},
pages={224-228},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004664702240228},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: RoboAssist, (NEUROTECHNIX 2013)
TI - Ankle-Knee Prosthesis with Powered Ankle and Energy Transfer - Development of the CYBERLEGs Alpha-Prototype
SN - 978-989-8565-80-8
AU - Flynn L.
AU - Geeroms J.
AU - Jimenez-Fabian R.
AU - Vanderborght B.
AU - Vitiello N.
AU - Lefeber D.
PY - 2013
SP - 224
EP - 228
DO - 10.5220/0004664702240228