MR Damper Identification using ANN based on 1-Sensor - A Tool for Semiactive Suspension Control Compliance

Juan C. Tudón-Martínez, Ruben Morales-Menendez, Ricardo A. Ramirez-Mendoza, Luis E. Garza-Castañón

2012

Abstract

A model for a Magneto-Rheological (MR) damper based on Artifical Neural Networks (ANN) is proposed. The ANN model does not require regressors in the input and output vector, i.e. is considered static. Only one sensor is used to achieve a reliable MR damper model which is compared with experimental data provided from two MR dampers with different properties. The RMS of the error is used to measure the model accuracy; from both MR dampers, an average value of 7.1% of total error in the force signal is obtained by taking into account 5 different experiments. The ANN model, which represents the nonlinear behavior of an MR damper, is used in a suspension control system of a Quarter of Vehicle (QoV) in order to evaluate the comfort of passengers maintaining the road holding. A control technique with the MR damper model is compared with a passive suspension system. Simulation results show the effectiveness of a semiactive suspension versus the passive one. The RMS of the comfort signal improves 7.4% with the MR damper while the road holding gain in the frequency response shows that the safety in the vehicle can be increased until 40.4% with the semiactive suspension system. The accurate MR damper model validates a realistic QoV response compliance.

References

  1. Ahn, K., Islam, M., and Truong, D. (2008). Hysteresis modeling of magneto-rheological (mr) fluid damper by self tuning fuzzy control. In ICCAS 2008, Seoul Korea, pages 2628-2633.
  2. Atray, V. and Roschke, P. (2003). Design, fabrication, testing and fuzzy modeling of a large magnetorheological damper for vibration control in a railcar. In IEEE/ASME Joint Rail Conf., pages 223-229.
  3. Boada, M., Calvo, J., Boada, B., and Díaz, V. (2011). Modeling of a magnetorheological damper by recursive lazy learning. International Journal of Non-Linear Mechanics, 46:479-485.
  4. C¸esmeci, S. and Engin, T. (2010). Modeling and testing of a field-controllable magnetorheological fluid damper. International Journal of Mechanical Sciences, 52(8):1036-1046.
  5. Chang, C. and Zhou, L. (2002). Neural network emulation of inverse dynamics for a magnetorheological damper. Journal of Structural Engineering, 128(2):231-239.
  6. Chen, E., Si, C., Yan, M., and Ma, B. (2009). Dynamic characteristics identification of magnetic rheological damper based on neural network. In Artificial Intelligence and Computational Intelligence, 2009, Shangai, China, pages 525-529.
  7. Choi, S., Lee, S., and Park, Y. (2001). A hysteresis model for field-dependent damping force of a magnetorheological damper. J. of Sound and Vibration, 245(2):375-383.
  8. Dong, X., Yu, M., Liao, C., and Chen, W. (2010). Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dynamics, 59:433-453.
  9. Du, H., Szeb, K., and Lam, J. (2005). Semiactive h1 control of vehicle suspension with magneto-rheological dampers. J. of Sound and Vibration, 283:981-996.
  10. Freeman, J. and Skapura, D. (1991). Neural Networks: Algorithms, Applications and Programming Techniques. Adisson-Wesley.
  11. Gamota, D. and Filisko, F. (1991). Dynamic mechanical studies of electrorheological materials: Moderate frequencies. Journal of Rheology, 35:399-425.
  12. Guo, S., Yang, S., and Pan, C. (2006). Dynamical modeling of magneto-rheological damper behaviors. Int. Mater., Sys. and Struct., 16:3-14.
  13. Hagan, M., Demuth, H., and Beale, M. (1996). Neural Network Design. PWS Publishing.
  14. Hong, K., Sohn, H., and Hedrick, J. (2002). Modified skyhook control of semi-active suspensions: A new model, gain scheduling, and hardware-in-theloop tuning. J. Dyn. Sys., Meas., Control, 124(1):158- 167.
  15. Korbicz, J., Koscielny, J., Kowalczuk, Z., and Cholewa, W. (2004). Fault Diagnosis Models, Artificial Intelligence, Applications. Springer.
  16. Kwok, N., Ha, Q., Nguyen, T., Li, J., and Samali, B. (2006). A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sensors and Actuators A: Physical, 132:441-451.
  17. Lozoya-Santos, J., Morales-Menendez, R., and RamirezMendoza, R. (2009). Design of experiments for mr damper modelling. In 17th Int. Joint Conf. on Neural Networks, pages 1915-1922.
  18. Metered, H., Bonello, P., and Oyadiji, S. (2010). The experimental identification of magnetorheological dampers and evaluation of their controllers. Mechanical Systems and Signal Processing, 24:976-994.
  19. Poussot-Vassal, C., Sename, O., Dugard, L., Gáspár, P., Szabó, Z., and Bokor, J. (2008). A new semi-active suspension control strategy through lpv technique. Control Engineering Practice, 16(12):1519-1534.
  20. Ruiz-Cabrera, J., Díaz-Salas, V., Morales-Menendez, R., nón, L. G.-C., and Ramirez-Mendoza, R. (2010). Comparison of mr damper models. In 18th Mediterranean Conference on Control and Automation, Marrakech Morocco, June 23-25, pages 1509-1513.
  21. Savaresi, S., Bittanti, S., and Montiglio, M. (2005). Identification of semi-physical and black-box non-linear models: the case of mr-dampers for vehicles control. Automatica, 41:113-127.
  22. Sjöberg, J. (1995). Non-linear System Identification with Neural Networks. PhD thesis, Linköping University, Sweden.
  23. Spelta, M., Savaresi, S., and Fabbri, L. (2010). Experimental analysis of a motorcycle semi-active rear suspension. Control Engineering Practice, article in press:doi:10.1016/j.conengprac.2010.02.006.
  24. Spencer, B., Dyke, S., Sain, M., and Carlson, J. (1996). Phenomenological model of a mr damper. ASCE Journal of Engineering Mechanics, 123(3):230-238.
  25. Stanway, R., Sproston, J., and Stevens, N. (1987). Nonlinear modeling of an electrorheological vibration damper. Journal of Electrostatics, 20:167-184.
  26. Wang, L. and Kamath, H. (2006). Modeling hysteretic behaviour in mr fluids and dampers using phasetransition theory. Smart Mater. Struct., 15:1725-1733.
  27. Yang, G., Jr., B. S., and Dyke, S. (2002). Large-scale mr fluid dampers: Modeling and dynamic performance considerations. Engineering Structures, 24:309-323.
  28. Zapateiro, M., Luo, N., Karimi, H., and Vehí, J. (2009). Vibration control of a class of semiactive suspension system using neural network and backstepping techniques. Mechanical Systems and Signal Processing, 23:1946-1953.
Download


Paper Citation


in Harvard Style

C. Tudón-Martínez J., Morales-Menendez R., A. Ramirez-Mendoza R. and E. Garza-Castañón L. (2012). MR Damper Identification using ANN based on 1-Sensor - A Tool for Semiactive Suspension Control Compliance . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 493-502. DOI: 10.5220/0004159004930502


in Bibtex Style

@conference{ncta12,
author={Juan C. Tudón-Martínez and Ruben Morales-Menendez and Ricardo A. Ramirez-Mendoza and Luis E. Garza-Castañón},
title={MR Damper Identification using ANN based on 1-Sensor - A Tool for Semiactive Suspension Control Compliance},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)},
year={2012},
pages={493-502},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004159004930502},
isbn={978-989-8565-33-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)
TI - MR Damper Identification using ANN based on 1-Sensor - A Tool for Semiactive Suspension Control Compliance
SN - 978-989-8565-33-4
AU - C. Tudón-Martínez J.
AU - Morales-Menendez R.
AU - A. Ramirez-Mendoza R.
AU - E. Garza-Castañón L.
PY - 2012
SP - 493
EP - 502
DO - 10.5220/0004159004930502