DEVELOPMENT OF AN ELECTRICAL STIMULATION DEVICE FOR OSSEOINTEGRATED AMPUTEES - A Novel Approach for Expediting Skeletal Attachment and Rehabilitation

Brad Isaacson, Jeroen Stinstra, Rob MacLeod, Roy Bloebaum

2009

Abstract

The projected number of American amputees is expected to rise to 3.6 million by 2050. Many of these individuals depend on artificial limbs to perform routine activities, but prosthetic suspensions using traditional socket technology can prove to be cumbersome and uncomfortable for a person with limb loss. Moreover, for those with high proximal amputations, limited residual limb length may prevent exoprosthesis attachment all together. Osseointegration technology is a novel operative procedure that allows integration between host tissue and an orthopaedic implant and has been shown to improve clinical outcomes by allowing direct transfer of loads to a bone-implant interface. However, the associated surgical procedures require long rehabilitation programs that may be reduced through expedited skeletal attachment via electrical stimulation. To determine optimal electrode size and placement, we have developed a system for computational modeling of the electric fields that arise during electrical stimulation of residual limbs. Three patients with retrospective CT scans were selected and three dimensional reconstructions were created using customized software (Seg3D and SCIRun). These software packages supported the development of patient specific models and allowed for interactive manipulation of electrode position and size; all variables that could affect the electric fields around a percutaneous osseointegrated implant. Preliminary results of the electric fields at the implant interface support the need for patient specific modeling in order to achieve the homogenous electric field distribution required to induce osteoblast migration and enhance skeletal fixation.

References

  1. Agins, H. J., Alcock, N. W., Bansal, M., Salvati, E. A., Wilson, P. D., Pellicei, P. M., et al. (1988). Metallic wear in failed titanium-alloy total hip replacements. J. Bone Joint Surg. [Am.], 70-A(3), 347-356.
  2. Albrektsson, T., Branemark, I.-I., Hansson, H.-A., & Lindstrom, J. (1981). Osseointegrated titanium implants. Acta Orthop Scand, 52, 155-170.
  3. Albrektsson, T., & Albrektsson, B. (1987). Osseointegration of bone implants. A review of an alternative mode of fixation. Acta Orthop Scand, 58(5), 567-577.
  4. Beder, O. E., & Eade, G. (1956). An investigation of tissue tolerance to titanium metal implants in dogs. Surgery, 39(3), 470-473.
  5. Bloebaum, R. D., Bachus, K. N., Momberger, N. G., & Hofmann, A. A. (1994). Mineral apposition rates of human cancellous bone at the interface of porous coated implants. J Biomed Mater Res, 28(5), 537-544.
  6. Branemark, P. I. (1983). Osseointegration and its experimental background. J Prosthet Dent, 50(3), 399- 410.
  7. Branemark, R., Branemark, P. I., Rydevik, B., & Myers, R. R. (2001). Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev, 38(2), 175-181.
  8. Brighton, C. T. (1981). The treatment of non-unions with electricity. J Bone Joint Surg Am, 63(5), 847-851.
  9. Buckwalter, J. A., Glimcher, M. J., Cooper, R. R., & Recker, R. (1995). Bone biology. J Bone Joint Surg Am, 77(2), 1276-1289.
  10. Chakkalakal, D. A., & Johnson, M. W. (1981). Electrical properties of compact bone. Clin Orthop Relat Res(161), 133-145.
  11. Chiu, R. S., & Stuchly, M. A. (2005). Electric fields in bone marrow substructures at power-line frequencies. IEEE Trans Biomed Eng, 52(6), 1103-1109.
  12. Emneus, H., & Gudmundsson, G. (1967). Final report on clinical testing of titanium. Acta Orthop Scand, 372- 373.
  13. Ferrier, J., Ross, S. M., Kanehisa, J., & Aubin, J. E. (1986). Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. J Cell Physiol, 129(3), 283-288.
  14. Friedenberg, Z. B., Zemsky, L. M., Pollis, R. P., & Brighton, C. T. (1974). The response of nontraumatized bone to direct current. J Bone Joint Surg Am, 56(5), 1023-1030.
  15. Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol, 41(11), 2271-2293.
  16. Grimnes, S. & Martinsen O. (2008). Bioimpedance and Bioelectricity Basics. Amersterdam: Academic Press.
  17. Hagberg, K., & Branemark, R. (2001). Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int, 25(3), 186-194.
  18. Hofmann, A. A., Bachus, K. N., & Bloebaum, R. D. (1993). Comparative study of human cancellous bone remodeling to titanium and hydroxyapatite coated implants. J. Arthroplasty, 8(2), 157-166.
  19. Hofmann, A. A., Bloebaum, R. D., & Bachus, K. N. (1997). Progression of human bone ingrowth into porous-coated implants. Acta Orthop. Scand., 68(2), 161-166.
  20. Ke, Z., Cheng-Feng, L., & Zhen-Gang, Z. (2007). Measurement of Electrical Conductivity of Porous Titanium and Ti6Al4V Prepared by the Powder Metallurgy Method.. Chin. Phys. Lett., 24(1), 187-190.
  21. Lane, J. M., & Vigorita, V. J. (1983). Osteoporosis. J Bone Joint Surg Am, 65(2), 274-278.
  22. Lavine, L. S., & Grodzinsky, A. J. (1987). Electrical stimulation of repair of bone. J Bone Joint Surg Am, 69(4), 626-630.
  23. Noda, M., & Sato, A. (1985). Appearance of osteoclasts and osteoblasts in electrically stimulated bones cultured on chorioallantoic membranes. Clin Orthop Relat Res (193), 288-298.
  24. Spadaro, J. A. (1997). Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics, 18(3), 193-202.
  25. Stinstra, J. G., Jolley, M., Callahan, M., Weinstein, D., Cole, M., Brooks, D. H., et al. (2007). Evaluation of different meshing algorithms in the computation of defibrillation thresholds in children. IEEE Engineering in Medicine and Biology Conference.
  26. Tortora, J. & Nielsen M. (2008). Principles of Human Anatomy (11th ed). United States: John Wiley & Sons.
  27. Williams, D. F. (1982). Biocompatibility of Orthopedic Implants. Volume I. In D. F. Williams (Ed.), CRC Series in Biocompatibility (pp. 141-195). Liverpool: CRC Press, Inc.
Download


Paper Citation


in Harvard Style

Isaacson B., Stinstra J., MacLeod R. and Bloebaum R. (2009). DEVELOPMENT OF AN ELECTRICAL STIMULATION DEVICE FOR OSSEOINTEGRATED AMPUTEES - A Novel Approach for Expediting Skeletal Attachment and Rehabilitation . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009) ISBN 978-989-8111- 64-7, pages 178-185. DOI: 10.5220/0001511501780185


in Bibtex Style

@conference{biodevices09,
author={Brad Isaacson and Jeroen Stinstra and Rob MacLeod and Roy Bloebaum},
title={DEVELOPMENT OF AN ELECTRICAL STIMULATION DEVICE FOR OSSEOINTEGRATED AMPUTEES - A Novel Approach for Expediting Skeletal Attachment and Rehabilitation},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)},
year={2009},
pages={178-185},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001511501780185},
isbn={978-989-8111- 64-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)
TI - DEVELOPMENT OF AN ELECTRICAL STIMULATION DEVICE FOR OSSEOINTEGRATED AMPUTEES - A Novel Approach for Expediting Skeletal Attachment and Rehabilitation
SN - 978-989-8111- 64-7
AU - Isaacson B.
AU - Stinstra J.
AU - MacLeod R.
AU - Bloebaum R.
PY - 2009
SP - 178
EP - 185
DO - 10.5220/0001511501780185